只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...

本文主要是介绍只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

就一句话。

不谈感情,只谈代码。

本系列的代码可以当作入门,复习,作为模板修改成自己的,都是可以的。

这个系列会长期更新下去,主要与python,机器学习,数据挖掘,tensorflow,pytorch相关,后期自己准备复习一些java,学习一些go相关也会一起分享。

一来是大家都代码实战的诉求其实是比理论多的多,总会有人在我文章下面问:有代码吗?能给份代码嘛?

说实话,很多代码给不了,也没法给,我不太喜欢这样白嫖,还是希望各位自己去做一些事情,这样才是对自身的要求和提高,也是一个程序员的素养。

二来,也算自己对一些基础的积累和巩固,尽量两天一篇,每天保持对代码的嗅觉。

今天讲的是pytorch框架下,写一个平时常用来测试的小例子,关于时间序列,模型用的最简单的LSTM,多步迭代预测~

前情提要:

【PyTorch修炼】三、先做减法,具体例子带你了解torch使用的基本套路(简单分类和时间序列预测小例子)

【PyTorch修炼】二、带你详细了解并使用Dataset以及DataLoader

【PyTorch修炼】三、先做减法,具体例子带你了解torch使用的基本套路(简单分类和时间序列预测小例子)

1. 导入我们需要用到的包,此教程 包含可视化以及模型训练和测试

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltimport torch
import torch.nn as nn

2. 对于demo,尝试模型,我们可以用自己模拟的数据或者公开数据集,这里为了方便,采用自己模拟sin函数,并可视化

x = torch.linspace(0, 999, 1000)
y = torch.sin(x*2*3.1415926/70)
plt.xlim(-5, 1005)
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.title("sin")
plt.plot(y.numpy(), color='#800080')
plt.show()
5ea57435f93537b8cf10934bdef760df.png

3. 分训练集和测试集,并且需要对数据进行time windows分割

# len(test):50 
train_y= y[:-70]
test_y = y[-70:]

滑窗创建数据集

def create_data_seq(seq, time_window):out = []l = len(seq)for i in range(l-time_window):x_tw = seq[i:i+time_window]y_label = seq[i+time_window:i+time_window+1]out.append((x_tw, y_label))return out
time_window = 60
train_data = create_data_seq(train_y, time_window)

4. 定义lstm模型

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

【Deep Learning】通俗大白话详述RNN理论和LSTM理论

【Deep Learning】详细解读LSTM与GRU单元的各个公式和区别

class MyLstm(nn.Module):def __init__(self, input_size=1, hidden_size=128, out_size=1):super(MyLstm, self).__init__()self.hidden_size = hidden_sizeself.lstm = nn.LSTM(input_size=input_size, hidden_size=self.hidden_size, num_layers=1, bidirectional=False)self.linear = nn.Linear(in_features=self.hidden_size, out_features=out_size, bias=True)self.hidden_state = (torch.zeros(1, 1, self.hidden_size), torch.zeros(1, 1, self.hidden_size))def forward(self, x):out, self.hidden_state = self.lstm(x.view(len(x), 1, -1), self.hidden_state)pred = self.linear(out.view(len(x), -1))return pred[-1]

5. 训练准备工作

(1) 超参数

(2) 定义loss,优化器,实例化模型

(3) 训练模型,为了更加直观,加入对test_y的预测最终可视化

learning_rate = 0.00001
epoch = 10
multi_step = 70
model = MyLstm()
mse_loss = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.5,0.999))device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model.to(device)
for i in range(epoch):for x_seq, y_label in train_data:x_seq = x_seq.to(device)y_label = y_label.to(device)model.hidden_state = (torch.zeros(1, 1, model.hidden_size).to(device), torch.zeros(1, 1, model.hidden_size).to(device))pred = model(x_seq)loss = mse_loss(y_label, pred)optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {i} Loss: {loss.item()}")preds = []labels = []preds = train_y[-time_window:].tolist()for j in range(multi_step):test_seq = torch.FloatTensor(preds[-time_window:]).to(device)with torch.no_grad():model.hidden_state = (torch.zeros(1, 1, model.hidden_size).to(device), torch.zeros(1, 1, model.hidden_size).to(device))preds.append(model(test_seq).item())loss = mse_loss(torch.tensor(preds[-multi_step:]), torch.tensor(test_y))print(f"Performance on test range: {loss}")plt.figure(figsize=(12,4))plt.xlim(700,999)plt.grid(True)plt.plot(y.numpy(),color='#8000ff')plt.plot(range(999-multi_step,999),preds[-multi_step:],color='#ff8000')plt.show()

结果

0a6e22e56e2b1d6e2dfca926e85bbc71.png 71a8cf5a501e2c36e737f188add823ba.png完整代码:https://github.com/chehongshu/AIwoniuche_Learning/blob/master/Pytorch_LSTM_examples/demo-timeseries.ipynb

这篇关于只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412386

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除