重磅!这本30w人都在看的Python数据分析畅销书:更新了!

2023-11-22 19:04

本文主要是介绍重磅!这本30w人都在看的Python数据分析畅销书:更新了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想学习python进行数据分析,这本《利用python进行数据分析》是绕不开的一本书。目前该书根据Python3.10已经更新到第三版。

Python 语言极具吸引力。自从 1991 年诞生以来,Python 如今已经成为最受欢迎的解释型编程语言。

pandas 诞生于2008年。它是由韦斯·迈金尼(Wes McKinney)于2008年开始开发的,最初的目标是为了解决金融数据分析中的一些实际问题。pandas于2009年作为开源项目发布,并逐渐在数据科学和数据分析领域获得了广泛的应用和认可。

如果你想学习如何使用Python进行数据分析,那么这本***《利用Python进行数据分析》***是必不可少的一本书。而这本书的作者正是Python数据分析核心pandas库的开发者韦斯·迈金尼。现在,这本30w人都在看的Python数据分析畅销书第三版中文版已经上市!

图片

相比于第二版,第三版多了41页内容,pandas升级为1.4.0、Python升级为3.10。第三版最大的变化是紧贴pandas升级,主要是新增了方法和特性的内容。

图片

***《利用Python进行数据分析》***这本书的成功绝非偶然。这本书的主角是pandas。从技术上讲,pandas负责处理原始数据,将其规整、清洗后成为高质量的结构化数据,再利用数据进行可视化或模型训练。从业务上讲,pandas上承爬虫,下启机器学习,pandas的两个重要的数据结构Series和DataFrame已成为机器学习中重要的基础数据结构。

***《利用Python进行数据分析》***这本书的写作质量非常高,得益于本书作者也是pandas库的创作者,本书知识点组织清晰、讲解流畅,文字中间穿插代码、注意事项、图片和表格,所以读起来一点也不枯燥。字里行间还能感受到作者对技术和开源的热爱。

掌握pandas,能为许多工作奠定基础,比如商业分析、金融量化、机器学习。另外,pandas对学校和科研单位的研究者也非常有帮助。

作译者简介

作者:Wes McKinney是Voltron Data的联合创始人兼首席技术官、Python数据社区的活跃成员,同时也是在数据分析、金融和统计计算等领域推广使用Python的倡导者。Wes毕业于麻省理工学院,同时也是Apache软件基金会的Apache Arrow和Apache Parquet项目的项目管理委员会成员。

译者:陈松,清华大学技术经济研究所副研究员,技术经济大数据实验室技术负责人,参与多项省部级、地区性课题研究。著有《区块链通识课50讲》,译有《DeFi与金融的未来》,具有 4 项国家发明专利。日常维护名为SeanCheney的博客、GitHub和公众号,阅读量上千万。

主要变动

  • 基于Python 3.10和pandas 1.4全面更新代码示例。

  • 知识点紧跟Python、NumPy、pandas,以及其他项目的最新版本。

  • 新增配套在线开源电子版,便于读者随时查看更新。

  • 增加对新特性、新工具及方法的介绍。

  • 新增大量实际案例。

导读视频:

为方便初学者阅读,译者陈松老师为本书制作了配套导读视频。视频可在B站“IT阅读排行榜”免费观看!
在这里插入图片描述

购书链接:

https://item.jd.com/14260998.html

在这里插入图片描述

这篇关于重磅!这本30w人都在看的Python数据分析畅销书:更新了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412264

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre