白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前面的章节中,我们使用相关系数函数测量2个变量之间线性相关的强度,对于大多数应用只是知道线性相关是不够的,我们想要理解这个关系的本质,我们会使用简单线性回归来加以理解。

The Model

有2个变量,一个是DataSciencester网站用户的数量,另一个是每个用户在这个网站上每天所花费的时间。假设你自己确信有更多朋友引起人们在这个网站上花费更多的时间。

Engagement部门的副总要求你建立一个模型,描述这个关系。由于你发现一个极其强的线性关系,自然的你会开启一个线性模型。

尤其,你假设有2个常量 α (alpha)和 β (beta):
yi=αxi+β+σi

yi 是用户 i 在网站上每天花费多少分钟,xi是用户 i 有多少朋友,σi是一个误差项,表示有其他因素没有计算到这个简单模型中。

假设我们确定alpha和beta,那么我们能简单的做出预测:

def predict(alpha, beta, x_i):return beta * x_i + alpha

那么,我们怎样选择alpha和beta?首先我们选择任意的alpha和beta,对于输入x_i会有一个预测的输出,由于我们知道真实的输出y_i,我们能计算每对的误差:

def error(alpha, beta, x_i, y_i):"""the error from predicting beta * x_i + alphawhen the actual value is y_i"""return y_i - predict(alpha, beta, x_i)

我们想要知道的是全部数据集的总体误差,但是我们不想只是简单的把误差相加—-如果x_1预测是正值,x_2预测是负值,那么这2个误差可能互相抵消。

所以,代替的解决方案是求误差的平方和:

def sum_of_squared_errors(alpha, beta, x, y):return sum(error(alpha, beta, x_i, y_i) ** 2for x_i, y_i in zip(x, y))

最小二乘法(least squares solution)是选出的alpha和beta,让sum_of_squared_errors尽可能的小。

使用微积分(或者乏味的代数),最小化误差得到的alpha和beta是:

def least_squares_fit(x, y):"""given training values for x and y,find the least-squares values of alpha and beta"""beta = correlation(x, y) * standard_deviation(y) / standard_deviation(x)alpha = mean(y) - beta * mean(x)return alpha, beta

我们没有仔细检查数学公式,让我们考虑为什么这个是一个合理的解决方案,alpha的选择简单的说是当我们计算出独立变量x的平均值时,我们预测因变量y的平均值。

beta的选择意思是,当输入值增加了standard_deviation(x),预测增加了correlation(x,y)*standard_deviation(y)。在这个案例中,当x与y是完美的正相关,那么x增加一个standard deviation引起预测的y增加一个standard-deviation;当他们是完美的负相关时,x增加引起预测y的减小;当相关系数是0时,意思是x的改变不能影响预测的y值。

很容易应用这个到减少离群值:

alpha, beta = least_squares_fit(num_friends_good, daily_minutes_good)

计算结果alpha = 22.95,beta = 0.903,所以我们的模型预测有n个朋友的用户每天花费 22.95+n0.903 分钟在这个网站上。我们预测没有朋友的用户每天花费23分钟在这个网站上,每增加一个朋友,预测这个用户会多花一分钟的时间在这个网站。

在下图中,我们画出预测线,了解模型怎样拟合观察数据。
这里写图片描述

当然,我们需要更好的方法理解我们拟合数据的程度,而不是盯着图看,一个普遍的测量是决定系数(或者叫R方),测量的是变量发生变化的部分:

def total_sum_of_squares(y):"""the total squared variation of y_i's from their mean"""return sum(v ** 2 for v in de_mean(y))def r_squared(alpha, beta, x, y):"""the fraction of variation in y captured by the model, which equals1 - the fraction of variation in y not captured by the model"""return 1.0 - (sum_of_squared_errors(alpha, beta, x, y) /total_sum_of_squares(y))r_squared(alpha, beta, num_friends_good, daily_minutes_good) # 0.329

现在,我们选择alpha和beta,以使误差的平方和最小化。我们选择的线性模型是”总是预测mean(y)”(对应alpha = mean(y)和beta = 0),它的 sum of squared errors等于它的total sum of squares。意思是R方等于0,暗示一个模型几乎总是等于均值。

很显然,最小二乘模型最差劲的情况下,也就是和上面的模型一样,意思是sum of the squared errors最大是total sum of squares,R方最小是0; sum of squared errors最小是0,R方最大是1。

R方越大,模型拟合的越好。这里我们计算R方等于0.329,告诉我们,我们的模型只是稍微拟合这个数据,很显然还有其他因素的影响。

使用梯度下降法

如果我们要求 theta=[alpha,beta] ,那么我们也能使用梯度下降法(gradient descent)解决这个问题:

def squared_error(x_i, y_i, theta):alpha, beta = thetareturn error(alpha, beta, x_i, y_i) ** 2def squared_error_gradient(x_i, y_i, theta):alpha, beta = thetareturn [-2 * error(alpha, beta, x_i, y_i), # alpha partial derivative-2 * error(alpha, beta, x_i, y_i) * x_i] # beta partial derivative# choose random value to start
random.seed(0)
theta = [random.random(), random.random()]
alpha, beta = minimize_stochastic(squared_error,squared_error_gradient,num_friends_good,daily_minutes_good,theta,0.0001)
print alpha, beta

使用相同的数据,我们能得到alpha = 22.93,beta = 0.905,这个数字非常接近真实的答案。

最大似然估计

为什么要选择最小二乘法,一个判断理由涉及最大似然估计(maximum likelihood estimation)。设想我们有一组样本 v1,...,vn 来自一个分布,这个分布依赖一些位置参数 θ
p(v1,...,vn|θ)

如果我们不知道theta,我们能调换位置,把这个数看成已知样本下 θ 的概率:
L(θ|v1,...,vn)

在这种方法下,最可能的 θ 值是最大化概率函数的情况,即,让观察到的数据最大化概率的值。在连续型分布的案例中,我们有一个概率分布函数而不是概率密度函数,在这种情况下,我们能做相同的事情(因为一般情况下连续型给出的都是概率密度函数)。

回到线性回归中,设想线性回归中的误差服从均值为0,方差为 σ 的整体分布,如果是这种情况,那么基于(x_i, y_i)的概率是:

这里写图片描述

基于全部数据集的似然函数是单个似然的乘积,当选择的alpha和beta最小化误差平方和时精确度最大。即,在本例中,最小化误差平方和等价于最大化观察数据的概率。

下一章节中我们将要介绍多元回归。

这篇关于白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410028

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I