白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

维度诅咒(The Curse of Dimensionality)

KNN在高维空间运行会出现”维度诅咒”的问题,那是因为在高维空间太广阔,高维空间的数据点不趋向接近另外的数据点。有一个办法可以证明这一点,随机产生很多对d维度的向量,然后计算每对的向量距离。

产生随机数据点:

def random_point(dim):return [random.random() for _ in range(dim)]

生成每对(num_pairs)向量的距离:

def random_distances(dim, num_pairs):return [distance(random_point(dim), random_point(dim))for _ in range(num_pairs)]

我们会计算维度从1到100,每一维度计算出10000个距离,使用这些距离计算每一维的平均距离和找出最小距离:

dimensions = range(1, 101)avg_distances = []
min_distances = []random.seed(0)
for dim in dimensions:distances = random_distances(dim, 10000) # 10,000 random pairsavg_distances.append(mean(distances)) # track the averagemin_distances.append(min(distances)) # track the minimum

这里写图片描述

当维度增加时,数据点之间的平均距离也增加,但是更重要的问题是在最近距离与平均距离的比率:

min_avg_ratio = [min_dist / avg_distfor min_dist, avg_dist in zip(min_distances, avg_distances)]

这里写图片描述

在低维数据集中,最小距离数据点更加接近平均值;在高维数据集中,最小距离数据点不接近平均值,这个意味着最小距离的2个数据点并不是很接近。

解决方案对高维空间进行降维。

在0到1之间,在一维空间里,你提取50个随机点,你将得到极好的且紧凑的样本:
这里写图片描述

在2维空间里,提取50个随机点,你会发现随机点零散的覆盖在2维空间里:
这里写图片描述

在3维空间里,你会得到更加零散的随机点:
这里写图片描述

matplotlib不能画4维空间,这是我们能做的最大限度了,但是这足够发现有很多空的空间,且在随机点周围没有太多的数据点。在更高维空间,除非你得到更加多的数据(指数增加的数据),否者这些大且空的空间表示没有数据点的区域,你想在你的模型中使用是非常不准确。

所以,如果你正在尝试在高维空间使用最近邻模型,那么一个好的主意是降维。下一章节中我们将要介绍朴素贝叶斯(Naive Bayes)。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410025

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本