白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

例子:最喜欢的编程语言(Example: Favorite Languages)

DataSciencester网站用户调查结果出来了,我们发现在许多大城市里人们所喜欢的编程语言如下:

# each entry is ([longitude, latitude], favorite_language)cities = [([-122.3 , 47.53], "Python"),  # Seattle([ -96.85, 32.85], "Java"),    # Austin([ -89.33, 43.13], "R"),       # Madison]

公司副总裁想要知道,在没有参加调查的地方,是否我们能使用这些结果预测最喜欢的编程语言。

像往常一样,第一个步骤是把数据画出来:

# key is language, value is pair (longitudes, latitudes)
plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }# we want each language to have a different marker and color
markers = { "Java" : "o", "Python" : "s", "R" : "^" }
colors  = { "Java" : "r", "Python" : "b", "R" : "g" }for (longitude, latitude), language in cities:plots[language][0].append(longitude)plots[language][1].append(latitude)# create a scatter series for each language
for language, (x, y) in plots.iteritems():plt.scatter(x, y, color=colors[language], marker=markers[language], label=language, zorder=10)plot_state_borders(plt)      # pretend we have a function that does thisplt.legend(loc=0)            # let matplotlib choose the location
plt.axis([-130,-60,20,55])   # set the axesplt.title("Favorite Programming Languages")
plt.show()

这里写图片描述

由于相近的地方趋向同一种编程语言,KNN似乎是一种合理的预测语言模型。

如果我们试着使用相邻城市而不是本身来预测每个城市所喜爱的语言,会发生什么呢:

# try several different values for k
for k in [1, 3, 5, 7]:num_correct = 0for city in cities:location, actual_language = cityother_cities = [other_cityfor other_city in citiesif other_city != city]predicted_language = knn_classify(k, other_cities, location)if predicted_language == actual_language:num_correct += 1print k, "neighbor[s]:", num_correct, "correct out of", len(cities)

看起来3NN执行的效果最好,大约59%的正确率:

这里写图片描述

现在我们能看出在最近邻方案中什么区域被分类成哪种语言,我们能画图如下:

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }k = 1 # or 3, or 5, or ...for longitude in range(-130, -60):for latitude in range(20, 55):predicted_language = knn_classify(k, cities, [longitude, latitude])plots[predicted_language][0].append(longitude)plots[predicted_language][1].append(latitude)

在下图,展示的是k=1情况:
这里写图片描述

当k增加到5时,边界变得更加光滑:
这里写图片描述

这里是我们粗略的进行比较,如果它们有单位,你可能想要先进行尺度变换操作。接下来我们将要介绍不同维度距离的变化。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410024

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键