白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设想一下,你正在预测接下来总统选举”我将要选择谁”,如果你不知道关于我的任何信息,一个合乎情理的方法是看我的邻居计划投谁,我们居住在西雅图,我的邻居一定按着计划投给Democratic候选人,这个暗示”Democratic候选人”对我也是个不错的猜想。

设想你知道更多关于我的信息,而不只是地理信息,也许你知道我的年龄、收入、我有几个孩子等等,这些特性扩大了影响我的行为,观察跟我这些特性相似的邻居们做出的选择,来预测我的选择,比观察我的所有邻居要更加靠谱,这个思想就是最近邻分类器(nearest neighbors classification)。

模型(The Model)

最近邻模型是最简单预测模型之一,它没有数学假设,不需要任何排序,只需要一下两点:
* 距离的概念;
* 假设一个点和另外一个临近的点是相似的。

我们在整个章节中所看到的大多数技术都是对覆盖整个数据集上,目的在数据集上学习模型。然而另一方面,最近邻有意识的忽略了很多信息,这是因为,每个新的点预测只依赖离它最近的极少数点。

而且,最近邻模型不可能让你理解你正在观察的现象(特征)为什么驱动模型选择这样一个结果。基于我的邻居的投票来预测我的投票,不会告诉你是什么原因引起我的投票方式。

一般情况,我们有一些数据点并且这些数据点对应着标签,这些标签可能是True或者False,暗示每个输入满足一定条件下为”是垃圾邮件”或者”是有毒的”,或者是一些名目属性标签,像电影的评级(G,PG,PG-13,NC-17)。或者是总统候选人的名字,或者是最喜爱的程序语言。

在我们的例子中,数据点是一些向量,这个意味着我们可以使用距离函数(线性代数篇中有介绍)。

为了做这个,我们需要一个函数计数投票结果:

def raw_majority_vote(labels):votes = Counter(labels)winner, _ = votes.most_common(1)[0]return winner

但是这个没有做任何智能的绑定。例如,设想一下我们正在评级电影,5个电影评级为G,G,PG,PG和R,那么G有2个票数,PG也有2个票数,这种情况下,我们有几个选择:
* 随机选择其中一个;
* 根据距离加权重,选择距离大的为winner;
* 减少k值,直到我们找到唯一的winner。

我们会实现第3种方法:

def majority_vote(labels):"""assumes that labels are ordered from nearest to farthest"""vote_counts = Counter(labels)winner, winner_count = vote_counts.most_common(1)[0]num_winners = len([countfor count in vote_counts.values()if count == winner_count])if num_winners == 1:return winner # unique winner, so return itelse:return majority_vote(labels[:-1]) # try again without the farthest

这个方法很有效,因此,在最坏的情况下,我们一直去掉一个数据点,直到最后只有一个label赢了:

def knn_classify(k, labeled_points, new_point):"""each labeled point should be a pair (point, label)"""# order the labeled points from nearest to farthestby_distance = sorted(labeled_points,# find the labels for the k closestk_nearest_labels = [label for _, label in by_distance[:k]]# and let them votereturn majority_vote(k_nearest_labels)

接下来,让我们看如何在实际中应用它。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410023

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键