支持向量机 Part 1:完全线性可分下的支持向量分类与python实现——机器学习笔记

本文主要是介绍支持向量机 Part 1:完全线性可分下的支持向量分类与python实现——机器学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

* * *  The Machine Learning Noting Series  * * *

导航

1. 概述:支持向量分类

2. 原理:完全线性可分下的支持向量分类

3. 求解:参数的拉格朗日乘数法求解

4. 预测:支持向量分类的预测

5. 应用:python实例与代码

1. 概述:支持向量分类

        支持向量机(Support Vector Machine, SVM)是在统计学习理论上发展起来的一种机器学习方法,在解决小样本、非线性和高维的分类、回归预测问题上有很多优势。

        支持向量机分为支持向量分类机和支持向量回归机,分别用于输入变量和二分类/数值型输出变量间的数量关系和分类预测,简称支持向量分类(Support Vector Classification, SVC);同理,支持向量回归(Support Vector Regression, SVR)用于输入变量和输出变量间的数量关系和回归预测。

       支持向量分类主要有2情况:①完全线性可分样本指两类样本不重合,能被超平面百分百完全分开;而广义线性可分则找不到一个超平面完全将其分开;② 线性不可分样本找不到一个超平面将其线性分开,只能使用曲面,此类型的支持向量分类是支持向量机的灵魂,通过核函数解决。

2. 原理:完全线性可分下的支持向量分类

       分类预测时,将训练集中的N个样本看成p维输入变量空间中的N个点(以点的不同形状或颜色代表输出变量的不同类别取值)。支持向量分类的目的是在p维空间中找到能将两类样本有效分开的超平面。

      以二维空间为例,如上右侧两图,分类超平面为两种背景颜色的分界线,此时超平面方程为b+w_{1}X_{1}+w_{2}X_{2}=0,其中,X_{1},X_{2}为两个维度。

      拓展到p维空间,则超平面方程变为b+w_{1}X_{1}+w_{2}X_{2}+\cdots +w_{p}X_{p}=0,即b+w^{T}X=0,分类超平面的位置由待估参数b和w确定。

      预测时,将某个待预测点代入包含参数估计值的式子\widehat{b}+\widehat{w}^{T}X中,该预测点因式子大于或小于0而分别位于超平面两侧,因此输出变量分别为-1或1.

上左两图中的分界线为使用三层神经网络得到的分界面,对比来说,支持向量分类确定的超平面是具有最大边界的超平面,因此,它的优点在于:① 由较高预测置信度,因为超平面距两侧边缘点比一般的预测更远;② 最大边界超平面仅取决于两类的边缘观测点,从而有利于克服过拟合问题,具有很强的鲁棒性(Robustness)。

3. 求解:参数的拉格朗日乘数法求解

完全线性可分下的二维空间为例,步骤为:

1)找出可能的超平面。分别将两类最外侧样本观测点连线,形成两个多边形,称为两类样本集的凸包(Convex Hull),然后,以一类的凸包边界维基准线,找另一类凸包边界上的点,过该点做基准线的平行线,得到一对平行线,该平行线垂线的中垂线为对应的超平面。显然,可以找出很多个这样的超平面,下面找出平行线相距最远的对应的最大边界超平面。

2)若以y_{i}=1类凸包边界b+w^{T}X^{+}=1为基准线,超平面方程为b+w^{T}X=0,则平行线为b+w^{T}X^{-}=-1,那么平行线间的距离\lambda =\frac{2}{\left \| w \right \|},\left \| w \right \|=\sqrt{w^{T}w}

3) 若要使y_{i}=1/-1预测正确,则有b+w^{T}X_{i}\geq/\leq 1,因此有y_{i}(b+w^{T}X_{i})\geq 1.要使平行线间距离最大,则要\left \| w \right \|最小,为求解方便,即为\tau \left ( w \right )=\frac{1}{2}\left \| w \right \|^{2}=\frac{1}{2}w^{T}w最小,因此有超平面参数求解的凸二次型规划问题:

\left\{\begin{matrix} \underset{min}{\tau} (w)=\frac{1}{2}\left \| w \right \|^{2}=\frac{1}{2}w^{T}w\\s.t.\, \: \; \; y_{i}(b+w^{T}X_{i})-1\geq 0,i=1,2,...,N\end{matrix}\right.

此规划问题使用拉格朗日乘数法求解。假设目标函数为f(X)=X_{1}^{2}+X_{2}^{2},g(X)=X_{1}+X_{2}-1\leq 0g(X)=X_{1}+X_{2}+1\leq 0,f(X)的等高线图和g(X)≤0的图像如下图所示,

4. 预测:支持向量分类的预测

对新样本进行预测时,只需将样本X代入式子b+w^{T}X并且关注其符号:

h(X)=Sign(b+w^{T}X)=Sign\left [ b+\sum_{i=1}^{L}\left ( a_{i}y_{i}X_{i}^{T} \right )X \right ]=Sign\left [ b+\sum_{i=1}^{L} a_{i}y_{i}(X_{i}^{T}X) \right ]

其中Xi为支持向量,共有L个支持向量。若h(X)>0,则y^hat=1;若h(X)<0,则y^hat=-1.

5. 应用:python实例与代码

通过生成的模拟数据,展示完全线性可分下的最大边界超平面。

#导入模块
import numpy as np
from numpy import random
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import os
# 生成模拟数据并可视化
N=100
X,Y=make_classification(n_samples=N,n_features=2,n_redundant=0,n_informative=2,class_sep=1,random_state=1,n_clusters_per_class=1)plt.figure(figsize=(9,6))
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=123)
markers=['^','o']
for k,m in zip([1,0],markers):plt.scatter(X_train[Y_train==k,0],X_train[Y_train==k,1],marker=m,s=50)
plt.title("训练集中样本观测点的分布")
plt.xlabel("X1")
plt.ylabel("X2")
plt.grid(True,linestyle='-.')
plt.show()   

模拟数据的分布情况为:

接下来使用支持向量机求出最大边界超平面:

N=100
X,Y=make_classification(n_samples=N,n_features=2,n_redundant=0,n_informative=2,class_sep=1,random_state=1,n_clusters_per_class=1)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=123)
X1,X2= np.meshgrid(np.linspace(X_train[:,0].min(),X_train[:,0].max(),500),np.linspace(X_train[:,1].min(),X_train[:,1].max(),500))
X0=np.hstack((X1.reshape(len(X1)*len(X2),1),X2.reshape(len(X1)*len(X2),1)))
modelSVC=svm.SVC(kernel='linear',random_state=123,C=2) #modelSVC=svm.LinearSVC(C=2,dual=False)
modelSVC.fit(X_train,Y_train)
print("超平面的常数项b:",modelSVC.intercept_)
print("超平面系数W:",modelSVC.coef_)
print("支持向量的个数:",modelSVC.n_support_)
Y0=modelSVC.predict(X0)
plt.figure(figsize=(6,4)) 
plt.scatter(X0[np.where(Y0==1),0],X0[np.where(Y0==1),1],c='lightgray')
plt.scatter(X0[np.where(Y0==0),0],X0[np.where(Y0==0),1],c='mistyrose')
for k,m in [(1,'^'),(0,'o')]:plt.scatter(X_train[Y_train==k,0],X_train[Y_train==k,1],marker=m,s=40)plt.scatter(X_test[Y_test==k,0],X_test[Y_test==k,1],marker=m,s=40,c='',edgecolors='g')plt.scatter(modelSVC.support_vectors_[:,0],modelSVC.support_vectors_[:,1],marker='o',c='b',s=120,alpha=0.3)
plt.xlabel("X1")
plt.ylabel("X2")
plt.title("线性可分下的支持向量机最大边界超平面")
plt.grid(True,linestyle='-.')
plt.show()   

结果为:

参考文献

《Python机器学习 数据建模与分析》,薛薇 等/著

这篇关于支持向量机 Part 1:完全线性可分下的支持向量分类与python实现——机器学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/409006

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买