维特比算法求解HMM上的最短路径

2023-11-22 06:40
文章标签 算法 路径 求解 hmm 维特

本文主要是介绍维特比算法求解HMM上的最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是我的理解

一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。

  states = ('Rainy', 'Sunny')observations = ('walk', 'shop', 'clean')start_probability = {'Rainy': 0.6, 'Sunny': 0.4}transition_probability = {'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},}emission_probability = {'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}

在这里插入图片描述

第一天是晴天的概率=0.4×0.6=0.24
第一天是雨天的概率=0.6×0.1=0.06

并不能因此判断第一天的天气,因为他们是最初始的,只有起始点指向它们(只有一个分支)还要根据第一天晴天雨天的概率计算第二天的天气概率。

第二天的情况分为s-r,r-r,r-s,s-s。因为第二天天气往前推的分支有两个,即第二天的前一天也就是第一天的天气情况有两种,因此可以比较s-r,r-r选出概率较大的那一个,剩下的指向雨天的分支去掉。比较s-s,r-s选出概率较大的那一个,剩下指向晴天的分支去掉。
s-r=0.4×8.6×0.4×0.4=0.384
r-r=0.6×0.1×0.7×0.4=0.168(舍)
s-s=0.4×0.6×0.6×0.3=0432
r-s=0.6×0.6×0.3×0.3=0.0054(舍)
在这里插入图片描述

同理选出第三天的天气,即为所求

演算

请添加图片描述

代码(参考网络)

states = ('Rainy', 'Sunny')observations = ('walk', 'shop', 'clean')start_probability = {'Rainy': 0.6, 'Sunny': 0.4}transition_probability = {'Rainy': {'Rainy': 0.7, 'Sunny': 0.3},'Sunny': {'Rainy': 0.4, 'Sunny': 0.6},
}emission_probability = {'Rainy': {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},'Sunny': {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}# 打印路径概率表
def print_dptable(V):print("    ")for i in range(len(V)): print("%7d" % i)# printfor y in V[0].keys():print("%.5s: " % y)for t in range(len(V)):print("%.7s" % ("%f" % V[t][y]))# printdef viterbi(obs, states, start_p, trans_p, emit_p):""":param obs:观测序列:param states:隐状态:param start_p:初始概率(隐状态):param trans_p:转移概率(隐状态):param emit_p: 发射概率 (隐状态表现为显状态的概率):return:"""# 路径概率表 V[时间][隐状态] = 概率V = [{}]# 一个中间变量,代表当前状态是哪个隐状态path = {}# 初始化初始状态 (t == 0)for y in states:V[0][y] = start_p[y] * emit_p[y][obs[0]]path[y] = [y]# 对 t > 0 跑一遍维特比算法for t in range(1, len(obs)):V.append({})newpath = {}for y in states:# 概率 隐状态 =    前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率(prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])# 记录最大概率V[t][y] = prob# 记录路径newpath[y] = path[state] + [y]# 不需要保留旧路径path = newpathprint_dptable(V)(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])return (prob, path[state])def example():return viterbi(observations,states,start_probability,transition_probability,emission_probability)print(example())

运行结果

在这里插入图片描述

原题链接
viterbi

这篇关于维特比算法求解HMM上的最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/408237

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、