Movidius的深度学习入门

2023-11-22 03:30
文章标签 学习 入门 深度 movidius

本文主要是介绍Movidius的深度学习入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Ubuntu虚拟机上安装NC SDK

   cd /home/shine/Downloads/mkdir NC_SDKgit clone https://github.com/movidius/ncsdk.gitmake install

   通过运行测试例程判断是否正确安装

   make examples

 2.激活USB设备

  在启动ubuntu前,请不要插入movidius,等ubuntu启动以后,再插入(知乎用户经验,笔者测试不影响)

3.测试工程

   cd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_cpp/make runcd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_py/make run

  正常结果显示

   Hello NCS! Device opened normally.Goodbye NCS!  Device Closed normally.NCS device working.

 4.训练工程

  ncappzoo中提供了大量的工程样例提供分析,为开发者的模型选择提供了极大的便利,在选择模型的时候需要综合权衡训练样本的类型、大小以及部署后的运行速度。

   cd /home/shine/Downloads/NC_SDK/ncsdk/git clone https://github.com/ashwinvijayakumar/ncappzoogit checkout dogsvscats 

   以猫和狗的分类任务为例

  • 数据集的准备(在百度网盘中共享测试数据集和训练数据集)

    https://pan.baidu.com/s/1mtXYfB61Czkadjrgs4RXzw

    https://pan.baidu.com/s/1ZD4Hocgk4bMcl8tQGkTHcQ

   cd ncappzoo/apps/dogsvscatsmkdir datamv /home/shine/Downloads/test1.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/mv /home/shine/Downloads/train.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/cd ncappzoo/apps/dogsvscatsmake 

   上述操作主要执行

   Image pre-processing - resizing , cropping , histogram equalization (图像预处理)Shuffling the images  (图像打乱)Splitting the images into training and validation (图像分割为训练集和测试集)Creating an lmdb database of these images (格式转换)Computing image mean -a common deep learning technique used to normalize data (计算图像均值)  
  • 模型对比

  ①比较模型的差异

   export CAFFE_PATH=~/Downloads/caffe-masterdiff -u $CAFFE_PATH/models/bvlc_googlenet bvlc_googlenet/org  
  • 数据训练

  ①下载caffe预训练模型,使用本地CPU或GPU进行训练,CAFFE_PATH需要替换为本地安装目录

   $CAFFE_PATH/scripts/download_model_binary.py $CAFFE_PATH/models/bvlc_googlenet$CAFFE_PATH/build/tools/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights $CAFFE_PATH/models/bvlc_googlenet/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log  

 

    #错误1:Cannot use GPU in CPU-only Caffe: check modecd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgvim solver.prototxt将其中的 solver_mode: GPU改为 solver_mode: CPU 或者将caffe重新编译成GPU模式#错误2:Check failed: error == cudaSuccess (2 vs. 0) out of memory由于博主使用的是GTX 650Ti 显存只有979Mb,执行GPU运算的时候出现显存不足的现象 

   ②使用Intel AI Cloud 加速训练

    如上文所述,在本地训练数据是一个巨大的运算量,常常需要几周或几个月,因此使用Intel提供的云服务器可以极大缩短训练的时间

    在terminal中使用如下语句登陆到AI Cloud 服务器

    ssh colfaxmkdir dogsvscats   

   登陆成功后即显示

    ######################################################################### Welcome to Intel AI DevCloud!             ######################################################################## 

   将训练dogsvscats工程所需的数据集及shell命令上传到服务器(请根据实际目录进行调整,若上传速度较慢请尝试云服务器wget直接下载开放数据集)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/train.zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/test1.zip .zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/ 

   将对应的shell文件和Makefile上传到服务器用于训练数据预处理(请根据实际目录进行调整)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/Makefile colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-labels.py colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-lmdb.sh colfax:/home/u14673/ncappzoo/apps/dogsvscats/ 

   使用Makefile进行预处理,由于Makefile中deps含有sudo apt-get -y install unzip和sudo pip install pyyaml,且sudo apt-get在AI Cloud中无法运行

   vi Makefile 

   将deps更改为

     @echo "Installing dependencies..."#      sudo apt-get -y install unzip#      sudo pip install pyyaml 

   :wq!保存后退出,创建任务用于数据预处理

   vi data_process.sh 

   在打开的界面中输入(请根据实际目录进行调整)

    echo "Start Data Process"cd /home/u14673/ncappzoo/apps/dogsvscats/make allecho "Data Process Finished"  

   :wq!保存后退出,提交任务开始数据预处理

    qsub data_process.sh 

    使用qstat可以查看任务完成的情况,完成后会在当前目录中生成对应的日志文件 

   将训练所需的prototxt及预训练模型上传至AI Cloud

   scp -r /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/caffe/models/bvlc_googlenet/bvlc_googlenet.caffemodel colfax:/home/u14673/ncappzoo/apps/dogsvscats/ 

    创建任务用于数据训练

   vi data_train.sh  

     在打开的界面中输入如下语句(请根据实际目录进行调整)      

   cd /home/u14673/ncappzoo/apps/dogsvscats/echo 'Start Trainning'
   # >&表示所有的标准输出和标准错误输出都将被重定向
/glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights /home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log    

   关于caffe train命令的定义,标准的范例如下

     caffe train \--solver=solver_1st.prototxt \--weights=VGG/VGG_ILSVRC_16_layers.caffemodel \--gpu=0,1,2,3  2>&1 | tee log_1st.txt

   其中--solver为必要的参数,配置solver文件
   如果从头开始训练模型,则无需配置--weights
   如果从快照中恢复,则需要配置--snapshot
   如果是fine-tuning,则需要配置
--weights

   :wq!保存后退出,提交任务开始训练,训练完成后在当前目录可以看到日志文件

   qsub data_train.sh   

   查看日志,日志保存在 bvlc_googlenet/org 目录,使用如下命令将数据拷贝到本地

   scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/train.log ./   

   使用caffe自带的工具绘制(位于caffe/tools/extra目录)训练数据,caffe中支持很多种曲线绘制,通过指定不同的类型参数即可,具体参数如下

  Notes:  1. Supporting multiple logs.  2. Log file name must end with the lower-cased ".log".  Supported chart types:  0: Test accuracy  vs. Iters  1: Test accuracy  vs. Seconds  2: Test loss  vs. Iters  3: Test loss  vs. Seconds  4: Train learning rate  vs. Iters  5: Train learning rate  vs. Seconds  6: Train loss  vs. Iters  7: Train loss  vs. Seconds  

   解析日志并生成Test accuracy  vs. Seconds曲线(实际应该为Test Loss,参考https://www.cnblogs.com/WaitingForU/p/9130327.html的解析)

    cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org    cp -r /home/shine/Downloads/caffe/tools/extra ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgmv train.log ./extra/./plot_training_log.py.example 0 save.png ./train.log

     

                   Test Loss Vs Seconds 

    

                    Train Loss Vs Seconds

   从上述两张图来看,似乎训练过程并未收敛,对于这一问题,原作者并未给出原因,而是建议去掉--weights重新进行训练   

  /glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt 2>&1 | tee bvlc_googlenet/org/train_withoutweights.log

   

                      Test Loss Vs Iters

   

                    Test Accuracy Vs Iters

    将训练后的模型拷贝到本地

  scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/bvlc_googlenet_iter_40000.caffemodel /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/
  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/

   本地机器(需要安装NCSDK)查看网络分析,大致可以得到如下的图形,显示了各层连接的带宽和运行时间

  mvNCProfile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodelfirefox output_report.html

   

 

  • 模型调优

   作者对比了dogsvscats例程中改进的网络和GoogLenet原始网络,通过Caffe自带的Python工具分别绘制对应网络拓扑

  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgpython ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png
cd
~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/custompython ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png

   使用python-caffe自带的工具draw_net.py时可能会遇到如下错误

  #错误1 ImportError: No module named google.protobuf (没有安装python-protobuf) 
      sudo apt-get install python-protobuf

  #错误2 ImportError: No module named _caffe (caffe源码编译的时候没有编译pycaffe)
      cd ~/Downloads/caffe/
      sudo make pycaffe

  #错误3 ImportError: No module named skimage.io (没有安装python-skimage) 
      sudo apt-get install python-skimage

  #错误4 ImportError: No module named pydot (没有安装python-pydot)
      sudo apt install python-pydot python-pydot-ng graphviz
  • 模型部署

根据最新训练的结果,生成graph文件

  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/org (由于前面训练过程未能收敛,使用该模型预测时会出现Nan的结果)mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/custom (定制优化后的网络)
  mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  • 模型测试

  修改ncappzoo/apps/image-classifier.py,原文件如下

  # User modifiable input parametersNCAPPZOO_PATH           = '../..'GRAPH_PATH              = NCAPPZOO_PATH + '/caffe/GoogLeNet/graph'IMAGE_PATH              = NCAPPZOO_PATH + '/data/images/cat.jpg'CATEGORIES_PATH         = NCAPPZOO_PATH + '/data/ilsvrc12/synset_words.txt'IMAGE_MEAN              = numpy.float16( [104.00698793, 116.66876762, 122.67891434] )IMAGE_STDDEV            = ( 1 )IMAGE_DIM               = ( 224, 224 )

  修改后的文件如下

  NCAPPZOO_PATH           = '../..'GRAPH_PATH              = NCAPPZOO_PATH +'/apps/dogsvscats/bvlc_googlenet/custom/dogsvscats-org.graph'IMAGE_PATH              = NCAPPZOO_PATH +'/apps/dogsvscats/data/test1/173.jpg'CATEGORIES_PATH         = NCAPPZOO_PATH +'/apps/dogsvscats/data/categories.txt'IMAGE_MEAN              = numpy.float16( [106.202, 115.912, 124.449] )IMAGE_STDDEV            = ( 1 )IMAGE_DIM               = ( 224, 224 )

  使用生成的graph测试准确率(注意是python3,使用python image-classifier.py时会报错,具体原因待查明)

  cd ~/Downloads/ncappzoo/apps/image-classifierpython3 image-classifier.py

  得到结果如下

  ------- predictions --------Prediction for : dog with 100.0% confidence in 89.67 msPrediction for : cat with 0.0% confidence in 89.67 ms

  那么关于本步骤部署,系统具体作了哪些事情呢,深入查看image-classifier.py我们可以得知

  # ---- Step 1: Open the enumerated device and get a handle to it -------------#  枚举Movidius神经元计算棒# ---- Step 2: Load a graph file onto the NCS device -------------------------#  加载graph文件# ---- Step 3: Offload image onto the NCS to run inference -------------------#  加载image文件# ---- Step 4: Read & print inference results from the NCS -------------------#  读取并打印运算结果# ---- Step 5: Unload the graph and close the device -------------------------#  关闭神经元计算棒
  • 模型调优  

 

 

 

  • 参考文献:

   1.https://movidius.github.io/blog/deploying-custom-caffe-models

   2.https://communities.intel.com/community/tech/intel-ai-academy

   3.https://www.kaggle.com/khorchanov/dogsvscats

转载于:https://www.cnblogs.com/WaitingForU/p/9043737.html

这篇关于Movidius的深度学习入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407178

相关文章

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性