机器学习-时间序列自回归移动平均模型-翻译(Autoregressive moving average model,ARMA)

本文主要是介绍机器学习-时间序列自回归移动平均模型-翻译(Autoregressive moving average model,ARMA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0.前言

1.自回归模型(Autoregressive model,简称AR)

2.移动平均模型(Moving Average model,简称MA)

3.自回归滑动平均模型(Autoregressive moving average model,简称ARMA)

4.Note about the error terms 注意误差术语

5.Specification in terms of lag operator 滞后算符方面的规范/用滞后算子表示的规范

5.1Alternative notation 替代符号

6.Fitting models 拟合模型

6.1Implementations in statistics packages 数据统计包的实现

7.Applications 应用程序

8.Generalizations 概括推广

8.1具有外生输入的自回归移动平均模型(Autoregressive moving average model with exogeneous inputs models,简称ARMAX)


0.前言

在统计和信号处理中,自回归移动平均(ARMA)模型通常应用于时间序列数据,有时被称为博克思-詹金斯(Box-Jenkins)模型,因为通常使用迭代的Box-Jenkins方法来估计它们。

给定数据 X_{t} 的时间序列,ARMA模型是一种工具,用于理解和预测该序列的未来值。该模型由两个部分组成,自回归(AR)部分和移动平均(MA)部分。该模型通常被称为ARMA(p,q)模型,其中p是自回归部分的阶数,q是移动平均部分的阶数(定义如下)。

1.自回归模型(Autoregressive model,简称AR)

符号AR(p)指的是p阶的自回归模型,其中c为模型的参数,为常数,是白噪声。为了简单起见,许多作者省略了常数项。自回归模型本质上是一个加了一些附加解释的全极无限脉冲响应滤波器。为了使模型保持平稳,必须对该模型的参数值进行一些约束。例如,AR(1)模型中|\Phi _{1}|≥1的过程是不平稳的。

2.移动平均模型(Moving Average model,简称MA)

符号MA(q)指的是阶q的移动平均模型: 其中θ1,…, θq是模型的参数,μ是 X_{t} 的期望(通常假设为0),‘… ’还是白噪声误差项。移动平均模型本质上是一个有限脉冲响应滤波器加上一些额外的解释。

3.自回归滑动平均模型(Autoregressive moving average model,简称ARMA)

ARMA(p, q)表示具有p个自回归项和q个移动平均项的模型。该模型包含AR(p)和MA(q)模型.

4.Note about the error terms 注意误差术语

误差项通常被假设为独立的同分布随机变量(i.i.d),抽样自平均值为零的正态分布:~ N(0,\sigma ^{2} ),其中\sigma ^{2} 为方差。这些假设可能被削弱,但这样做将改变模型的属性。特别是,对(i.i.d)假设的改变将产生相当根本性的区别。

5.Specification in terms of lag operator 滞后算符方面的规范/用滞后算子表示的规范

在一些文本中,模型将根据滞后算子L来指定,在这些条件下,AR(p)模型由其中φ代表多项式MA(q)模型由θ表示多项式最后给出了组合ARMA(p, q)模型

5.1Alternative notation 替代符号

包括Box、Jenkins和Reinsel(1994)在内的一些作者对自回归系数使用了不同的约定。这允许所有的多项式涉及滞后算符出现在一个类似的形式贯穿始终。

6.Fitting models 拟合模型

ARMA模型一般在选择pq之后,可以通过最小二乘回归拟合得到误差项最小的参数值。通常认为,找到pq的最小值对数据具有可接受的拟合性是一种很好的做法。对于纯AR模型,Yule-Walker(尤勒-沃克)方程可用于提供拟合。

6.1Implementations in statistics packages 数据统计包的实现

在R中,tseries包包含一个arma函数。该函数在“拟合ARMA模型到时间序列”中有文档说明。
MATLAB包含一个AR函数来估计AR模型,更多细节请看这里。
IMSL数值库是数值分析功能的库,包括用C、Java、c# . net和Fortran等标准编程语言实现的ARMA和ARIMA过程,gretl还可以估计ARMA模型,GNU Octave可以使用额外包Octave -forge中的函数来估计AR模型。

7.Applications 应用程序

当一个系统是一系列未观察到的冲击(MA部分)及其自身行为的函数时,ARMA是合适的。例如,股票价格可能会受到基本面信息的冲击,以及由于市场参与者的影响而表现出技术趋势和mean-reversion effects(均值回归效应)。

8.Generalizations 概括推广

假设 X_{t} 对过去值和误差项 \varepsilon _{t} 的依赖关系是线性的,除非另有说明。如果相关性是非线性的,则具体称为非线性移动平均nonlinear moving average(NMA)、非线性自回归nonlinear autoregressive(NAR)或非线性自回归移动平均nonlinear autoregressive moving average(NARMA)模型。

自回归移动平均模型可以用其他方法推广。参见自回归条件异方差 autoregressive conditional heteroskedasticity (ARCH)模型和自回归综合移动平均autoregressive integrated moving average (ARIMA)模型。如果要拟合多个时间序列,则可以拟合一个vector矢量ARIMA(或VARIMA)模型。如果有问题的时间序列显示长记忆,那么fractional分数ARIMA (FARIMA,有时称为ARFIMA)建模可能是合适的:参见 Autoregressive fractionally integrated moving average 自回归分数积分移动平均。如果数据被认为包含季节性影响,则可以用SARIMA(seasonal季节性ARIMA)或periodic周期性ARMA模型来建模。

另一个推广是多尺度自回归(MAR)模型,MAR模型由树的节点索引,而标准(离散时间)自回归模型则由整数索引。

注意ARMA模型是一个单变量模型。多变量情况的扩展是向量自回归Vector Autoregression(VAR)和向量自回归移动平均Vector Autoregression Moving-Average(VARMA)

8.1具有外生输入的自回归移动平均模型(Autoregressive moving average model with exogeneous inputs models,简称ARMAX)

表示ARMAX(p, q, b)指的是包含p个自回归项、q个移动平均项和b个外生输入项的模型。该模型包含AR(p)和MA(q)模型,以及已知和外部时间序列d_{t}的最后b项的线性组合,其中为外生输入d_{t}的参数。已经定义了一些带有外生变量的模型的非线性变体:参见例如Nonlinear autoregressive exogenous model非线性自回归外生模型。

统计包通过使用“外生”或“独立”变量实现ARMAX模型。

翻译:自动回归移动模型 - 小司 - 博客园

自动回归移动模型_weixin_34297300的博客-CSDN博客

这篇关于机器学习-时间序列自回归移动平均模型-翻译(Autoregressive moving average model,ARMA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406276

相关文章

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法