机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析)

本文主要是介绍机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多项式回归定义公式及案例

文章目录

  • 多项式回归定义公式及案例
    • 1、前言
    • 2、定义及公式
    • 3、案例代码
      • 1、数据解析
      • 2、绘制散点图
      • 3、多项式回归、拟合

1、前言

之前写了一元和多元线性回归用来描述线性问题

机器学习:利用sklearn方法的一元线性回归模型(通过成绩预测绩点)_天海一直在的博客-CSDN博客_sklearn一元线性回归

机器学习:利用sklearn方法的多元线性回归模型(通过成绩预测绩点)_天海一直在的博客-CSDN博客_线性回归预测成绩

但如果我们找的不是直线或者超平面,而是一条曲线,那么就可以用多项式回归来分析和预测。

2、定义及公式

多项式回归可以写成:
Y i = β 0 + β 1 X i + β 2 X i 2 + . . . + β k X i k Y_{i} = \beta_{0} +\beta_{1}X_{i}+\beta_{2}X_{i}^2+...+\beta_{k}X_{i}^k Yi=β0+β1Xi+β2Xi2+...+βkXik
例如二次曲线:
y = a t 2 + b t + c y=at^2+bt+c y=at2+bt+c

3、案例代码

1、数据解析

首先有数据2020年2月24日至2020年4月30日疫情每日新增病例数和道琼斯指数,数据如下。

datenew_casesvolume
2020/2/242346399452730
2020/2/252668449962408
2020/2/263064408252788
2020/2/274327568873667
2020/2/284487796064921
2020/3/26430554364655
2020/3/38440552440168
2020/3/47920401575883
2020/3/59798401427499
2020/3/613360507343739
2020/3/915520629729505
2020/3/1017552555995247
2020/3/1127846550900431
2020/3/1221923777537526
2020/3/1352553728758617
2020/3/1654676681933454
2020/3/1758444703490970
2020/3/1871579757446929
2020/3/1998881677652753
2020/3/20110981746325491
2020/3/23151590694579371
2020/3/24144168701764913
2020/3/25180691698482135
2020/3/26220423613646149
2020/3/27225788498053291
2020/3/30222071475736601
2020/3/31262115507392584
2020/4/1275848441398052
2020/4/2277356440119768
2020/4/3283024358248473
2020/4/6241421512454039
2020/4/7237964499183085
2020/4/8276586399118977
2020/4/9284948462544792
2020/4/13230474338246109
2020/4/14279820427996199
2020/4/15257846375498608
2020/4/16316447416772131
2020/4/17284802458032076
2020/4/20240897358856528
2020/4/21242502420993963
2020/4/22263142306933373
2020/4/23268410334639614
2020/4/24293886333127761
2020/4/27223849337304670
2020/4/28238705340993299
2020/4/29247023396245166
2020/4/30260239416383852

2、绘制散点图

对于该数据我们通过绘制散点图可以看出,这是一个多项式回归的模型

import matplotlib.pyplot as plt
import xlrd
import numpy as np
# 载入数据,打开excel文件
ExcelFile = xlrd.open_workbook("sandian.xls")
sheet1 = ExcelFile.sheet_by_index(0)
x = sheet1.col_values(0)
y = sheet1.col_values(1)
# 将列表转换为matrix
x = np.matrix(x).reshape(48, 1)
y = np.matrix(y).reshape(48, 1)# 划线y
plt.title("Epidemic and Dow Jones data analysis")
plt.xlabel("new cases")
plt.ylabel("Dow Jones Volume")
plt.plot(x, y, 'b.')
plt.show()

image-20220514121935162

3、多项式回归、拟合

通过散点图的趋势,我们选择拟合3次来防止过拟合和欠拟合。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
from matplotlib.font_manager import FontProperties  # 导入FontPropertiesfont = FontProperties(fname="SimHei.ttf", size=14)  # 设置字体x = pd.read_excel('last_data.xls')['new_cases']
y = pd.read_excel('last_data.xls')['volume']# 进行多项式拟合(这里选取3次多项式拟合)
z = np.polyfit(x, y, 3) # 用3次多项式拟合# 获取拟合后的多项式
p = np.poly1d(z)
print(p)  # 在屏幕上打印拟合多项式# 计算拟合后的y值
yvals=p(x)# 计算拟合后的R方,进行检测拟合效果
r2 = r2_score(y, yvals)
print('多项式拟合R方为:', r2)# 计算拟合多项式的极值点。
peak = np.polyder(p, 1)
print(peak.r)# 画图对比分析
plot1 = plt.plot(x, y, '*', label='original values', color='red')
plot2 = plt.plot(x, yvals, '-', label='fitting values', color='blue',linewidth=2)plt.xlabel('new_cases',fontsize=13, fontproperties=font)
plt.ylabel('Dow Jones Volume',fontsize=13, fontproperties=font)
plt.legend(loc="best")
plt.title('fitting diagram')
plt.show()

最后结果如下图

image-20220514122949618

输出公式:
9.631e-08 x - 0.05356 x + 7169 x + 4.713e+08
多项式拟合R方为: 0.6462955787806361
[283148.64883622  87629.61932583]

这篇关于机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405701

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串