机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析)

本文主要是介绍机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多项式回归定义公式及案例

文章目录

  • 多项式回归定义公式及案例
    • 1、前言
    • 2、定义及公式
    • 3、案例代码
      • 1、数据解析
      • 2、绘制散点图
      • 3、多项式回归、拟合

1、前言

之前写了一元和多元线性回归用来描述线性问题

机器学习:利用sklearn方法的一元线性回归模型(通过成绩预测绩点)_天海一直在的博客-CSDN博客_sklearn一元线性回归

机器学习:利用sklearn方法的多元线性回归模型(通过成绩预测绩点)_天海一直在的博客-CSDN博客_线性回归预测成绩

但如果我们找的不是直线或者超平面,而是一条曲线,那么就可以用多项式回归来分析和预测。

2、定义及公式

多项式回归可以写成:
Y i = β 0 + β 1 X i + β 2 X i 2 + . . . + β k X i k Y_{i} = \beta_{0} +\beta_{1}X_{i}+\beta_{2}X_{i}^2+...+\beta_{k}X_{i}^k Yi=β0+β1Xi+β2Xi2+...+βkXik
例如二次曲线:
y = a t 2 + b t + c y=at^2+bt+c y=at2+bt+c

3、案例代码

1、数据解析

首先有数据2020年2月24日至2020年4月30日疫情每日新增病例数和道琼斯指数,数据如下。

datenew_casesvolume
2020/2/242346399452730
2020/2/252668449962408
2020/2/263064408252788
2020/2/274327568873667
2020/2/284487796064921
2020/3/26430554364655
2020/3/38440552440168
2020/3/47920401575883
2020/3/59798401427499
2020/3/613360507343739
2020/3/915520629729505
2020/3/1017552555995247
2020/3/1127846550900431
2020/3/1221923777537526
2020/3/1352553728758617
2020/3/1654676681933454
2020/3/1758444703490970
2020/3/1871579757446929
2020/3/1998881677652753
2020/3/20110981746325491
2020/3/23151590694579371
2020/3/24144168701764913
2020/3/25180691698482135
2020/3/26220423613646149
2020/3/27225788498053291
2020/3/30222071475736601
2020/3/31262115507392584
2020/4/1275848441398052
2020/4/2277356440119768
2020/4/3283024358248473
2020/4/6241421512454039
2020/4/7237964499183085
2020/4/8276586399118977
2020/4/9284948462544792
2020/4/13230474338246109
2020/4/14279820427996199
2020/4/15257846375498608
2020/4/16316447416772131
2020/4/17284802458032076
2020/4/20240897358856528
2020/4/21242502420993963
2020/4/22263142306933373
2020/4/23268410334639614
2020/4/24293886333127761
2020/4/27223849337304670
2020/4/28238705340993299
2020/4/29247023396245166
2020/4/30260239416383852

2、绘制散点图

对于该数据我们通过绘制散点图可以看出,这是一个多项式回归的模型

import matplotlib.pyplot as plt
import xlrd
import numpy as np
# 载入数据,打开excel文件
ExcelFile = xlrd.open_workbook("sandian.xls")
sheet1 = ExcelFile.sheet_by_index(0)
x = sheet1.col_values(0)
y = sheet1.col_values(1)
# 将列表转换为matrix
x = np.matrix(x).reshape(48, 1)
y = np.matrix(y).reshape(48, 1)# 划线y
plt.title("Epidemic and Dow Jones data analysis")
plt.xlabel("new cases")
plt.ylabel("Dow Jones Volume")
plt.plot(x, y, 'b.')
plt.show()

image-20220514121935162

3、多项式回归、拟合

通过散点图的趋势,我们选择拟合3次来防止过拟合和欠拟合。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
from matplotlib.font_manager import FontProperties  # 导入FontPropertiesfont = FontProperties(fname="SimHei.ttf", size=14)  # 设置字体x = pd.read_excel('last_data.xls')['new_cases']
y = pd.read_excel('last_data.xls')['volume']# 进行多项式拟合(这里选取3次多项式拟合)
z = np.polyfit(x, y, 3) # 用3次多项式拟合# 获取拟合后的多项式
p = np.poly1d(z)
print(p)  # 在屏幕上打印拟合多项式# 计算拟合后的y值
yvals=p(x)# 计算拟合后的R方,进行检测拟合效果
r2 = r2_score(y, yvals)
print('多项式拟合R方为:', r2)# 计算拟合多项式的极值点。
peak = np.polyder(p, 1)
print(peak.r)# 画图对比分析
plot1 = plt.plot(x, y, '*', label='original values', color='red')
plot2 = plt.plot(x, yvals, '-', label='fitting values', color='blue',linewidth=2)plt.xlabel('new_cases',fontsize=13, fontproperties=font)
plt.ylabel('Dow Jones Volume',fontsize=13, fontproperties=font)
plt.legend(loc="best")
plt.title('fitting diagram')
plt.show()

最后结果如下图

image-20220514122949618

输出公式:
9.631e-08 x - 0.05356 x + 7169 x + 4.713e+08
多项式拟合R方为: 0.6462955787806361
[283148.64883622  87629.61932583]

这篇关于机器学习——多项式回归、拟合(疫情新增病例与道琼斯指数分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405701

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499