【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现

本文主要是介绍【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、Jacobi 旋转法
    • 1. 基本思想
    • 2. 计算过程演示
    • 3. 注意事项
  • 二、Python实现
    • 迭代过程(调试)

  矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi 旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。

  本文将详细介绍 Jacobi 旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Python实现。

一、Jacobi 旋转法

  Jacobi 旋转法的每一次迭代中,需要选择一个非对角元素最大的位置,然后构造相应的旋转矩阵,进行相似变换,使得矩阵逐渐对角化。

  • 对称矩阵是一个实数矩阵,其转置与自身相等。
  • 对于一个方阵 A A A,如果存在标量 λ λ λ 和非零向量 v v v,使得 A v = λ v Av = λv Av=λv,那么 λ λ λ 就是 A A A 的特征值, v v v 就是对应于 λ λ λ 的特征向量。

1. 基本思想

  Jacobi 旋转法的基本思想是通过一系列的相似变换,逐步将对称矩阵对角化,使得非对角元素趋于零。这个过程中,特征值逐渐浮现在对角线上,而相应的特征向量也被逐步找到。下面是 Jacobi 旋转法的基本步骤:

  1. 选择旋转角度: 选择一个旋转角度 θ,通常使得旋转矩阵中的非对角元素为零,从而实现对角化,通常选择非对角元素中绝对值最大的那个作为旋转的目标。

  2. 构造旋转矩阵: 构造一个旋转矩阵 J,该矩阵为单位矩阵,只有对应于选择的非对角元素的位置上有两个非零元素,其余位置上为零。这两个非零元素的值由旋转角度 θ 决定,例如,对于 2x2 矩阵,旋转矩阵可以表示为:
    J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

  3. 相似变换: 计算相似变换矩阵 P P P,即 P T A P P^TAP PTAP,其中 A A A 是原始矩阵, P P P 是旋转矩阵,计算过程如下:

P T A P = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] T [ a 11 a 12 a 12 a 22 ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] P^TAP = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} PTAP=[cos(θ)sin(θ)sin(θ)cos(θ)]T[a11a12a12a22][cos(θ)sin(θ)sin(θ)cos(θ)]

  通过矩阵相乘计算,我们可以得到 P T A P P^TAP PTAP 中的非对角元素,假设这两个元素分别位于矩阵的 (1,2) 和 (2,1) 的位置。令 a i j a_{ij} aij 为这两个元素,即 a i j = a 12 = a 21 a_{ij}= a_{12} = a_{21} aij=a12=a21

  接下来,我们希望通过选择合适的 θ \theta θ使得 a i j a_{ij} aij 变为零,从而达到对角化的目的,即 a 12 = a 21 a_{12} = a_{21} a12=a21,进一步可推导出

θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)

  • a i i = a j j a_{ii}=a_{jj} aii=ajj,则使用 a r c c o t arccot arccot形式
  1. 迭代: 重复步骤 1-3,直到矩阵 A 的非对角元素都趋于零或满足一定的精度要求。

  2. 提取特征值和特征向量: 对角线上的元素即为矩阵 A 的特征值,而 P 中的列向量即为对应于这些特征值的特征向量。

2. 计算过程演示

  对于矩阵
A = [ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} A= 210121012

  我们首先找到非对角元素中绝对值最大的元素,这里我们以 (2,1) 为例,计算旋转角度和旋转矩阵。

  1. 选择旋转角度:

      计算旋转角度 θ \theta θ公式:
    θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)其中, a i i a_{ii} aii a j j a_{jj} ajj 分别是矩阵的对角元素,而 a i j a_{ij} aij 是非对角元素,即 a 21 a_{21} a21。 在这个例子中, a 21 = − 1 a_{21} = -1 a21=1 a 11 = a 22 = 2 a_{11} = a_{22} = 2 a11=a22=2

    θ = 1 2 arctan ⁡ ( − 2 0 ) = − π 4 \theta = \frac{1}{2} \arctan\left(\frac{-2}{0}\right) = -\frac{\pi}{4} θ=21arctan(02)=4π

  2. 构造旋转矩阵:

    构造旋转矩阵 ( J ):

J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

对于 θ = − π 4 \theta = -\frac{\pi}{4} θ=4π

J = [ cos ⁡ ( − π 4 ) − sin ⁡ ( − π 4 ) sin ⁡ ( − π 4 ) cos ⁡ ( − π 4 ) ] J = \begin{bmatrix} \cos\left(-\frac{\pi}{4}\right) & -\sin\left(-\frac{\pi}{4}\right) \\ \sin\left(-\frac{\pi}{4}\right) & \cos\left(-\frac{\pi}{4}\right) \end{bmatrix} J=[cos(4π)sin(4π)sin(4π)cos(4π)]

计算得:

J = [ 2 2 2 2 − 2 2 2 2 ] J = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} J=[22 22 22 22 ]

  1. 相似变换:

    计算相似变换矩阵 P P P

    P T A P P^T A P PTAP

    在这里, P P P就是构造的旋转矩阵 J J J

  2. 迭代:

    重复上述步骤,直到矩阵足够接近对角矩阵。

  这个过程会一步步地使矩阵趋近于对角矩阵,对角线上的元素就是矩阵的特征值,而相应的列向量就是对应的特征向量。由于计算较为繁琐,我在这里只展示了一个迭代的过程。在实际应用中,你需要进行多次迭代,直到满足精度的要求。
在这里插入图片描述
在这里插入图片描述

3. 注意事项

  Jacobi 旋转法的优点是可以用于任意大小的对称矩阵,但其缺点是迭代次数较多,计算量较大。在实际应用中,通常会结合其他方法来提高计算效率。

二、Python实现

import numpy as npdef jacobi_rotation(A):n = A.shape[0]tolerance = 1e-10max_iterations = 1000eigenvectors = np.eye(n)for _ in range(max_iterations):# 寻找最大的非对角元素max_off_diag = np.max(np.abs(np.triu(A, k=1)))if max_off_diag < tolerance:break  # 达到收敛条件# 找到最大元素的索引indices = np.unravel_index(np.argmax(np.abs(np.triu(A, k=1))), A.shape)i, j = indices# 计算旋转角度theta = 0.5 * np.arctan2(2 * A[i, j], A[i, i] - A[j, j])# 构造旋转矩阵J = np.eye(n)J[i, i] = J[j, j] = np.cos(theta)J[i, j] = -np.sin(theta)J[j, i] = np.sin(theta)# 执行相似变换A = np.dot(np.dot(J.T, A), J)# 更新特征向量eigenvectors = np.dot(eigenvectors, J)# 提取特征值eigenvalues = np.diag(A)return eigenvalues, eigenvectors# 示例矩阵
A = np.array([[2, -1, 0],[-1, 2, -1],[0, -1, 2]])# 执行 Jacobi 旋转
eigenvalues, eigenvectors = jacobi_rotation(A)print("特征值:", eigenvalues)
print("特征向量:")
np.set_printoptions(precision=4, suppress=True)
print(eigenvectors)

在这里插入图片描述

迭代过程(调试)

  • 第一次:
    在这里插入图片描述
  • 第二次:在这里插入图片描述
    ………
  • 第九次:
    在这里插入图片描述

这篇关于【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405526

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详