【VRP问题】基于大邻域搜索算法LNS算法求解带容量的车辆路径规划问题附Matlab代码

本文主要是介绍【VRP问题】基于大邻域搜索算法LNS算法求解带容量的车辆路径规划问题附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

LNS算法是一种启发式算法,用于解决组合优化问题,其基本思想是在每一步中随机选择一个子问题,然后对其进行求解,并将得到的解用于更新全局最优解,不断迭代直到满足终止条件。LNS算法通常用于解决NP难问题,如TSP、VRP等。

VRP问题是指在有限数量的车辆和客户需求点之间建立最优的路径规划方案,使得总路程或总成本最小,同时满足车辆容量限制等约束条件。而LNS算法是一种启发式算法,用于解决组合优化问题,其基本思想是在每一步中随机选择一个子问题,然后对其进行求解,并将得到的解用于更新全局最优解,不断迭代直到满足终止条件。

下面是基于LNS算法求解带容量的车辆路径规划问题的大致步骤:

  1. 随机生成初始解。可以使用贪心算法等方法生成初步解。

  2. 进行大邻域搜索。将初始解分为多个子问题,然后对每个子问题进行局部搜索,得到一个局部最优解。

  3. 更新全局最优解。将每个子问题的局部最优解与当前全局最优解进行比较,如果局部最优解更优,则更新全局最优解。

  4. 根据终止条件判断是否结束。如果未满足终止条件,则回到步骤2继续搜索。

  5. 输出最优解。最终得到的全局最优解即为所求的最优解。

需要注意的是,在大邻域搜索过程中,需要根据问题特点和约束条件设计合适的局部搜索算法。例如,对于带容量的VRP问题,可以使用贪心算法、禁忌搜索等方法进行局部搜索。

⛄ 部分代码

function routes=parallel_savings_init(model)

D=model.d;

d=model.r;

C=model.c(1);

L=0;

minimize_K=false;

C_EPS=1e-1;

N=size(D,1);

ignore_negative_savings=true;

routes=cell(numel(2:N),1);

route_costs=cell(numel(routes),1);

for i=1:numel(routes)

    routes{i}=i+1;

end

if C

    route_demands=d(2:end);

else

    route_demands=zeros(N,1);

    

end

if L>0.1

    for i=1:numel(routes)

        

        route_costs{i}=D(1,i+1)+D(i+1,1);

    end

    

    

end

    

saving=clarke_wright_savings_function(model);

endnode_to_route=[1,1:N-1];

for p=1:size(saving,1)

%     best_saving=saving(p,1);

    i=saving(p,3);

    j=saving(p,4);

    

    if ignore_negative_savings

        cw_saving = D(i,1)+D(1,j)-D(i,j);

        if cw_saving<0

            break

        end

    end

    

    left_route = endnode_to_route(i);

    right_route = endnode_to_route(j);

    

    

    if isnan(left_route) || isnan(right_route) || left_route==right_route

        continue

    end

    

%     if isempty(left_route) || isempty(right_route) || left_route==right_route

%         continue

%     end

    

    if C

        merged_demand = route_demands(left_route)+route_demands(right_route);

        if merged_demand-C_EPS > C

            continue

        end

    end

    

    

%     if L>0.1

%         merged_cost = route_costs[left_route]-D[0,i]+\route_costs[right_route]-D[0,j]+\D[i,j]

%     end

    

    if C

        route_demands(left_route) = merged_demand;

    end

    

%     if L>0.1

%         route_costs(left_route) = merged_cost;

%     end

    if routes{left_route}(1)==i

        routes{left_route}=flip(routes{left_route});

    end

    if routes{right_route}(end)==j

        routes{right_route}=flip(routes{right_route});

    end

    if numel(routes{left_route})>1

        endnode_to_route( routes{left_route}(end) ) = nan;

    end

    

    if numel(routes{right_route})>1

        endnode_to_route( routes{right_route}(1) ) = nan;

    end

    

    endnode_to_route( routes{right_route}(end) ) = left_route;

    

    routes{left_route}=[routes{left_route},routes{right_route}];

    routes{right_route} = nan;

end

end

⛄ 运行结果

⛄ 参考文献

[1] 王仁民.改进变邻域搜索算法在动态车辆路径问题中的研究[D].广西师范学院[2023-06-10].DOI:CNKI:CDMD:2.1013.315439.​

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于【VRP问题】基于大邻域搜索算法LNS算法求解带容量的车辆路径规划问题附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405444

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring