《PyTorch 深度学习实践》第9讲 多分类问题(Kaggle作业:otto分类)

2023-11-21 20:20

本文主要是介绍《PyTorch 深度学习实践》第9讲 多分类问题(Kaggle作业:otto分类),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 一些细碎代码
      • 1.1 Cross Entropy
      • 1.2 Mini-batch: batch_size=3
    • 2 示例
    • 3 作业
      • 任务描述
      • 查看数据
      • 进行建模
      • 提交Kaggle
      • 总结

该专栏内容为对该视频的学习记录:【《PyTorch深度学习实践》完结合集】
专栏的全部代码、数据集和课件全放在个人GitHub了,欢迎自取

1 一些细碎代码

1.1 Cross Entropy

一个样本的交叉熵,使用numpy实现:

image-20230413160741083

import numpy as npy = np.array([1, 0, 0])  # one-hot编码,该样本属于第一类
z = np.array([0.2, 0.1, -0.1])  # 线性输出
y_pred = np.exp(z) / np.exp(z).sum()  # 经softmax处理
loss = (-y * np.log(y_pred)).sum()
print(loss, y_pred)
0.9729189131256584 [0.37797814 0.34200877 0.28001309]

同样一个样本的交叉熵,使用torch实现:

image-20230413160521778

import torchy = torch.LongTensor([0])  # 该样本属于第一类
z = torch.tensor([[0.2, 0.1, -0.1]])  # 线性输出
criterion = torch.nn.CrossEntropyLoss()  # 使用交叉熵损失
loss = criterion(z, y)
print(loss)
tensor(0.9729)

1.2 Mini-batch: batch_size=3

import torchcriterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2, 0, 1])  #这里有三个样本,每个样本的类别分别为2,0,1
# 第一种预测的线性输出,并不是概率。跟上面的z一样,只是这里有三个样本
Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],  # 2[1.1, 0.1, 0.2],  # 0[0.2, 2.1, 0.1]])  # 1
# 第二种预测的线性输出
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],  # 0[0.2, 0.3, 0.5],  # 2[0.2, 0.2, 0.5]])  # 2l1 = criterion(Y_pred1, Y)
l2 = criterion(Y_pred2, Y)
print("Batch Loss1=", l1.item(), "\nBatch Loss2=", l2.item())
Batch Loss1= 0.4966353178024292 
Batch Loss2= 1.2388995885849

2 示例

这是一个使用PyTorch实现的简单的神经网络模型,用于对MNIST手写数字进行分类。代码主要包含以下几个部分:

  1. 数据准备:使用PyTorch的DataLoader加载MNIST数据集,对数据进行预处理,如将图片转为Tensor,并进行标准化。
  2. 模型设计:设计一个包含5个线性层和ReLU激活函数的神经网络模型,最后一层输出10个类别的概率分布。
  3. 损失和优化器:定义交叉熵损失函数和SGD优化器,用于训练模型。
  4. 训练和测试:使用训练数据对模型进行训练,使用测试数据对模型进行测试,输出准确率。

在训练过程中,每300个batch打印一次平均loss;在测试过程中,使用with torch.no_grad()上下文管理器关闭梯度计算,以提高测试效率。最终输出模型在测试集上的准确率。在该模型中,准确率最高为97%

import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader# 1、准备数据集
batch_size = 64
transform = transforms.Compose([  # 一系列的操作,Compose将其组合在一起transforms.ToTensor(),  # 将图片转为Tensor,并且转换为CHW,即C*H*W,C为通道数,H为高,W为宽,这里为1*28*28transforms.Normalize((0.1307,), (0.3081,))  # 标准化到[0,1],均值和方差
])
train_dataset = datasets.MNIST(root='../P6 逻辑斯谛回归/data',train=True,download=False,  # 在P6 逻辑斯谛回归中我已下载,这里直接读取即可transform=transform)
test_dataset = datasets.MNIST(root='../P6 逻辑斯谛回归/data',train=False,download=False,transform=transform)
train_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)  # 测试集设置为False,方便观察结果# 2、设计模型
class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.l1 = torch.nn.Linear(28 * 28, 512)self.l2 = torch.nn.Linear(512, 256)self.l3 = torch.nn.Linear(256, 128)self.l4 = torch.nn.Linear(128, 64)self.l5 = torch.nn.Linear(64, 10)def forward(self, x):x = x.view(-1, 28 * 28)  # 将图片展开为一维向量x = F.relu(self.l1(x))  # 激活函数x = F.relu(self.l2(x))x = F.relu(self.l3(x))x = F.relu(self.l4(x))return self.l5(x)  # 最后一层不需要激活函数,因为交叉熵损失函数会对其进行处理model = Net()# 3、构建损失和优化器
criterion = torch.nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 优化器,lr为学习率,momentum为动量# 4、训练和测试
def train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, labels = dataoptimizer.zero_grad()  # 梯度清零# forward + backward + updateoutputs = model(inputs)  # outputs并不是概率,而是线性层的输出,但其大小顺序与概率分布相同loss = criterion(outputs, labels)loss.backward()  # 反向传播optimizer.step()  # 更新参数running_loss += loss.item()if batch_idx % 300 == 299:  # 每300个batch打印一次平均lossprint('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():  # 测试过程中不需要计算梯度for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)  # 返回每一行中最大值的那个元素,以及其索引total += labels.size(0)  # labels的size为[64],即64个样本correct += (predicted == labels).sum().item()  # 统计预测正确的样本个数print('Accuracy on test set: %d %%' % (100 * correct / total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
[1,   300] loss: 2.166
[1,   600] loss: 0.767
[1,   900] loss: 0.385
Accuracy on test set: 90 %
[2,   300] loss: 0.307
[2,   600] loss: 0.262
[2,   900] loss: 0.232
Accuracy on test set: 93 %
[3,   300] loss: 0.192
[3,   600] loss: 0.164
[3,   900] loss: 0.159
Accuracy on test set: 95 %
[4,   300] loss: 0.133
[4,   600] loss: 0.118
[4,   900] loss: 0.119
Accuracy on test set: 96 %
[5,   300] loss: 0.100
[5,   600] loss: 0.094
[5,   900] loss: 0.094
Accuracy on test set: 97 %
[6,   300] loss: 0.074
[6,   600] loss: 0.078
[6,   900] loss: 0.074
Accuracy on test set: 97 %
[7,   300] loss: 0.062
[7,   600] loss: 0.060
[7,   900] loss: 0.058
Accuracy on test set: 97 %
[8,   300] loss: 0.048
[8,   600] loss: 0.049
[8,   900] loss: 0.050
Accuracy on test set: 97 %
[9,   300] loss: 0.040
[9,   600] loss: 0.040
[9,   900] loss: 0.041
Accuracy on test set: 97 %
[10,   300] loss: 0.033
[10,   600] loss: 0.032
[10,   900] loss: 0.032
Accuracy on test set: 97 %

3 作业

任务描述

Otto Group 是全球最大的电子商务公司之一,在 20 多个国家/地区设有子公司,包括 Crate & Barrel(美国)、Otto.de(德国)和 3 Suisses(法国)。我们每天在全球销售数百万种产品,并且有数千种产品被添加到我们的产品线中。

对我们产品的性能进行一致的分析至关重要。然而,由于我们多样化的全球基础设施,许多相同的产品会得到不同的分类。因此,我们产品分析的质量在很大程度上取决于对相似产品进行准确聚类的能力。分类越好,我们对产品系列的洞察力就越多。

对于本次比赛,我们提供了一个包含 200,000 多种产品的 93 个特征的数据集。目标是建立一个能够区分我们主要产品类别的预测模型。

查看数据

# 导入相关库
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader# 先了解一下数据的基本情况,再进行我们后面的建模流程
data = pd.read_csv('../Data/otto/train.csv')
data.head()  #查看前五行
data.info()  #查看数据信息
data.describe()  #查看数据统计信息
data.isnull().sum()  #查看缺失值
data['target'].value_counts()  #查看各个类别的数量

数据信息:完整的数据集包含 93 个特征和1 个目标变量。目标变量是一个类别变量,包含 9 个类别。每个类别的数量都不相同,但是每个类别的数量都超过 10,000 个。数据集中没有缺失值。

进行建模

# 1、准备数据
class OttoDataset(Dataset):def __init__(self):xy = np.loadtxt('../Data/otto/train.csv', delimiter=',', skiprows=1, usecols=np.arange(1, 94))df = pd.read_csv('../Data/otto/train.csv', sep=',')df['target'] = df['target'].map({'Class_1': 1, 'Class_2': 2,  #通过映射将类别转换为数字'Class_3': 3, 'Class_4': 4,'Class_5': 5, 'Class_6': 6,'Class_7': 7, 'Class_8': 8,'Class_9': 9})df['target'] = df['target'].astype('float')self.len = xy.shape[0]self.x_data = torch.from_numpy(xy[:, :])self.y_data = torch.tensor(df['target'].values)def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lendataset = OttoDataset()
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True)# 2、构建模型
class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.l1 = torch.nn.Linear(93, 64)self.l2 = torch.nn.Linear(64, 32)self.l3 = torch.nn.Linear(32, 16)self.l4 = torch.nn.Linear(16, 9)def forward(self, x):x = F.relu(self.l1(x))x = F.relu(self.l2(x))x = F.relu(self.l3(x))return self.l4(x)model = Net()# 3、构建损失和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.05, momentum=0.5)# 4、训练模型
def train(epoch):model.train()  #开启训练模式running_loss = 0.0for batch_idx, (inputs, labels) in enumerate(train_loader):inputs, labels = inputs.float(), labels.long()optimizer.zero_grad()# forward + backward + updateoutputs = model(inputs)  # 是线性层的输出值,不是概率值loss = criterion(outputs, labels - 1)  #因为类别是从1开始的,所以要减1loss.backward()optimizer.step()running_loss += loss.item()if (epoch % 5 == 0) and batch_idx % 1000 == 999:print('[%d, %5d] loss: %.3f' % (epoch, batch_idx + 1, running_loss / 1000))running_loss = 0.0# 5、进行预测并保存结果
def test():model.eval()  # 开启测试模式xyTest = np.loadtxt('../Data/otto/test.csv', delimiter=',', skiprows=1, usecols=np.arange(1, 94))df1 = pd.read_csv('../Data/otto/test.csv', sep=',')xy_pred = torch.from_numpy(xyTest[:, :])  # 将测试集转换为tensorcolumn_list = ['id', 'Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5','Class_6', 'Class_7', 'Class_8', 'Class_9']d = pd.DataFrame(0, index=np.arange(xy_pred.shape[0]), columns=column_list)  # 创建一个空的DataFramed.iloc[:, 1:] = d.iloc[:, 1:].astype('float')d['id'] = df1['id']  # 将id列赋值output = model(xy_pred.clone().detach().requires_grad_(True).float())row = F.softmax(output, dim=1).data  # 将输出值转换为概率值。注意维度为1classes = row.numpy()  # 将tensor转换为numpyclasses = np.around(classes, decimals=2)  # 保留两位小数d.iloc[:, 1:] = classes  # 将概率值赋值给DataFramed.to_csv('Submission.csv', index=False)  # 保存结果if __name__ == '__main__':for epoch in range(1, 30):train(epoch)test()
[5,  1000] loss: 0.537
[10,  1000] loss: 0.497
[15,  1000] loss: 0.480
[20,  1000] loss: 0.462
[25,  1000] loss: 0.447

提交Kaggle

image-20230413161348884

这个评判标准好像是两列的分数越低越好,可以看见我试了好多次,最低就只到0.7661了,累人~

总结

该代码是一个简单的 PyTorch 神经网络模型,用于分类 Otto 数据集中的产品。这个数据集包含来自九个不同类别的93个特征,共计约60,000个产品。

代码的执行分为以下几个步骤

1.数据准备:首先读取 Otto 数据集,然后将类别映射为数字,将数据集划分为输入数据和标签数据,最后使用 PyTorch 中的 DataLoader 将数据集分成多个小批量。

2.构建模型:构建了一个简单的四层全连接神经网络,输入层有93个特征,输出层有9个类别。

3.构建损失和优化器:选择了交叉熵损失作为损失函数,使用随机梯度下降算法作为优化器。

4.训练模型:每次迭代一个 epoch,使用小批量数据进行训练,输出训练的损失值,直到训练完所有的 epoch。

5.进行预测并保存结果:使用模型进行预测并保存结果到本地文件。

该代码使用 PyTorch 库中的张量 (Tensor) 和自动微分 (autograd) 来实现反向传播算法,这些功能使得神经网络的实现更加简单和高效。

这篇关于《PyTorch 深度学习实践》第9讲 多分类问题(Kaggle作业:otto分类)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/404840

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired