数据在计算机中的存储——数值数据的表示方法以及原码补码等系列深究

本文主要是介绍数据在计算机中的存储——数值数据的表示方法以及原码补码等系列深究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、定点数的表示方法
  • 二、原码,反码与补码。
      • 1.机器数
      • 2.真值
    • 1.原码
    • 2.反码
    • 3.补码
  • 三、浮点数的表示方法
  • 总结


前言

数值在计算机中的表示方法这一块一直有些混乱,以此文深究记录保持记忆。
我们都知道,在计算机中数据的小数点并不是用某个二进制数字来表示的,而是用隐含的小数点的位置来表示的。根据小数点位置是否固定,将计算机中的数据表示格式分为两种,即定点格式浮点格式


一、定点数的表示方法

定点数指小数点在数中位置固定不变的数。定点数分为定点整数和定点小数,由于小数点位置固定不变,所以存储时小数点不进行存储,按照约定的位置计算数值。原理上讲,小数点的位置可以位于任何位置,但通常将定点数表示成纯小数或纯整数。

假设以机器字长n位表示定点数,从右至左,从高位到低位分别为x0,x1,x2…xn-1,xn,其中x0取值0和1分别表示正号和负号。如此,对于任意一个定点数x=xnxn-1…x2x1,在定点机器中可表示为:

在这里插入图片描述


如果上图表示纯小数的话,那么小数点就在符号位x0和值位x1中间。
如果表示纯整数,那么小数点位于Xn的右边。

二、原码,反码与补码。

在学习之前,我们补习一些前置知识。

1.机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.
比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。那么,这里的 00000011 和 10000011 就是机器数。

2.真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。
所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

因此我的理解,机器数就是计算机用来存放数据时数据带有符号的二进制格式,而真值就是这个数的真实值。也就是将机器数的最高位符号位(0和1)变成符号。

好了,现在开始让我们正式学习原码,补码等变化规则:

1.原码

原码即真值

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

先给一个公式(这个公式不必要记住,用来理解真值与原码的转换):
在这里插入图片描述
这里的x是真值,
我们用以上的公式代入做题:


x1= 0.1101  x2=-0.1010  x3=1001 x4=-1110
[x1]=0.1101    [x2]=1.1010
[x3]=01001     [x4]= 11110据观察所知:原码和真值之间就是将最高位的符号位变成了01, 其实换句话说,原码等于真值在最高位加上符号位。
我们再来对这个公式剖析,我们计算得知,这个公式对于正数其直接是[x]=x; 
对于负数:如果是小数,就在其最高位+1,也就是[x]=1-x,这里的x是负数,所以也就是 1+x,利用此结果将符号转换为1;
如果是负整数,直接在其最高为+1,也就是给真值取掉符号位之后加上2的n次方。  
负整数: -000 0001  取掉符号位  然后加上27次方, 也就等于 1000 0001  成功换算为原码。

2.反码

反码的表示方法是:

正数的反码是其本身负数的反码是在其原码的基础上, 符号位不变,其余各个位取反例:[+1] = [00000001]= [00000001][-1] = [10000001]= [11111110]

3.补码

补码的表示方法是:

正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
例:
[+1] = [00000001]= [00000001]= [00000001][-1] = [10000001]= [11111110]= [11111111]

扩展(关于原码补码等深究)

三、浮点数的表示方法

在科学计算中,常常会遇到非常大或非常小的数值,如果用定点数来表示的话,很难同时满足数据的表示范围和运算精度的要求。为了解决这一问题,计算机中采用了浮点数格式。所谓浮点数格式,是指在表示数据时,将浮点数的范围和精度分别表示。
在这里插入图片描述
在上述浮点数的表示格式中,阶符占1位,阶码值占m位,数符占1位,尾数值占n位。
后来为了便于软件移植,IEEE754规定了浮点数的表示标准,也定义了单精度(32位浮点数),双精度(64位浮点数)常规格式,如下图
在这里插入图片描述
32位浮点数和64为浮点数中阶码的基数都是2.32位浮点数格式中,s是浮点数的的符号位,占1位,s=0表示正数,s=1表示负数,M是浮点数的尾数,放在低位部分,占23位,小数点放在浮点数的E和M之间,即M的最前面,实际尾数的取值为1.M;E是浮点数的阶码,占8位,阶符采用隐含方式。

浮点数的规格化:(正菜)
为了使浮点数格式统一,又尽可能提高其精度,通常采用浮点数规格化形式。

在IEEE754标准中,一个规格化的32位浮点数x的真值可表示为:

在这里插入图片描述
其中,S,M,E分别为32位浮点数表示格式和存储格式中的数符,尾数,公式中的E-127表示浮点数x的指数e,即e=E-127 或E=e+127。

在计算机中存储格式为16进制数(C2540000),其真值为:
先把存储格式表示为32位二进制数,
在这里插入图片描述
然后根据上图得出S=1 E=10000100 M=10101
代入公式(规格化公式)得:x=-110101=(-53)(10进制);
例题:


我们求出上面的二进制数(-10101)=十进制数(-53)在计算机中的存储格式。
将其二进制数表示为浮点数形式,并使其尾数为1.M的形式。
110101=1.10101X2^5;
由上可知 S=1;E=5+127=132=10000100; M=1010 1000 0000 0000
可得存储格式的二进制数为:
1100 0101 0100 0000 0000 0000 0000
转换为十六进制(C2540000)

以上就是浮点数规格化存储的转换。


总结

繁杂的小知识,乱而要精。

这篇关于数据在计算机中的存储——数值数据的表示方法以及原码补码等系列深究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/404440

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分