使用purge_haplogs处理基因组杂合区域

2023-11-21 14:10

本文主要是介绍使用purge_haplogs处理基因组杂合区域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FALCON和Canu的组装后会得到一个单倍型融合的基因组,用来表示二倍体基因组。之后,FALCON Unzip和Supernova这类软件进一步处理其中等位基因区域,将这部分区间进行拆分。

当基因组某些区域可能有着比较高的杂合度,这会导致基因组该区域的两个单倍型被分别组装成primary contig, 而不是一个为primary contig, 另一个是associated haplotig. 如果下游分析主要关注于单倍型,这就会导致一些问题。

那么有没有解决方案呢?其实也很好办,就是找到相似度很高的contig,将他们拆分。目前已经有一些软件可以完成类似任务,如 HaploMerger2, Redundans, 这不过这些软件主要处理二代组装结果。

purge_haplogs则是最近开发,用于三代组装的基因组。它根据minimap2的比对结果,通过分析比对read的覆盖度决定谁去谁留。该工具适用于单倍型组装软件,例如 Canu, FALCON或 FALCON-Unzip primary contigs, 或者是分相后的二倍体组装(Falcon-Unzip primary contigs + haplotigs 。

它的工作流程如下图所示。一般只需要两个输入文件,组装草图(FASTA格式) 和 比对的BAM文件。同时还可以提供重复序列注释的BED文件,辅助处理高重复的contig。

2013053-aa0d1c1178c3046a.png
分析流程

建议: 用原来用于组装的read进行比对。对于多个匹配的read,建议采取random best,也就是随便找一个。

软件安装

purge_haplotigs依赖软件比较多,手动安装会很麻烦,但是他可以直接用bioconda装

conda create -n purge_haplotigs_env
conda activate purge_haplotigs_env
conda install purge_haplotigs

安装完成后需要一步测试

purge_haplotigs test

简明教程

数据准备。 需要下载的数据集分为两个部分,一个是FALCON-Unzip后的primary contig 和 halplotigs. 另一个则是已经比完后的BAM文件

mkdir purge_haplotigs_tutorial
cd purge_haplotigs_tutorial
wget https://zenodo.org/record/841398/files/cns_h_ctg.fasta
wget https://zenodo.org/record/841398/files/cns_p_ctg.aligned.sd.bam # 1.7G
wget https://zenodo.org/record/841398/files/cns_p_ctg.aligned.sd.bam.bai wget https://zenodo.org/record/841398/files/cns_p_ctg.fasta
wget https://zenodo.org/record/841398/files/cns_p_ctg.fasta.fai

当然我们不可能直接就拿到比对好的BAM文件,我们一般是有组装后的基因组以及用于组装的subread,假设这两个文件命名为, genome.fa 和 subreads.fasta.gz.

minimap2 -ax map-pb genome.fa subreads.fasta.gz \| samtools view -hF 256 - \| samtools sort -@ 8 -m 1G -o aligned.bam -T tmp.ali

如果你有二代测序数据,也可以用BWA-MEM进行比对得到BAM文件。

第一步:使用purge_haplotigs readhist从BAM中统计read深度,绘制柱状图。

purge_haplotigs  readhist  -b aligned.bam  -g genome.fasta  -t 20
# -t 线程数, 不宜过高,过高反而没有效果。

也就是下图,你能明显的看到图中有两个峰,一个是单倍型的覆盖度,另一个二倍型的覆盖度,

2013053-b3c0c46eba030da3.png
高杂合基因组read-depth histogram

你可能还想知道高纯合基因组是什么样的效果,我也找了一个纯合的物种做了也做了read-depth 柱状图,

2013053-77166f97f8b14c91.png
纯合基因组read-depth histogram

之后你需要根据read-depth 柱状图 确定这两个峰的位置用于下一步。下面是两个例子。对于我们则是,20,65,190.

2013053-7561308e761d13ee.png
两个例子

第二步: 根据read-depth信息选择阈值。

purge_haplotigs  contigcov  -i cns_p_ctg.aligned.sd.bam.gencov  -o coverage_stats.csv  -l 20  -m 75  -h 190

这一步生成的文件是"coverage_stats.csv"

第三步:区分haplotigs.

purge_haplotigs purge  -g cns_p_ctg.fasta  -c coverage_stats.csv  -b cns_p_ctg.aligned.sd.bam  -t 4  -a 60

这一步会得到如下文件

  • curated.artefacts.fasta:无用的contig,也就是没有足够覆盖度的contig.
  • curated.fasta:新的单倍型组装
  • curated.haplotigs.fasta:从原本组装分出来的haplotigs
  • curated.reassignments.tsv: 单倍型的分配信息
  • curated.contig_associations.log: 运行日志, 下面是其中一个记录,表示000004F_004和000004F_027是000004F_017的HAPLOTIG, 而000004F_017和000004F_013又是000004F,的HAPLOTIG。
000004F,PRIMARY -> 000004F_013,HAPLOTIG-> 000004F_017,HAPLOTIG -> 000004F_004,HAPLOTIG-> 000004F_027,HAPLOTIG

在"curated.reassignments.tsv"文件中有6列

  • reassigned_contig: 用于比较的contig
  • top_hit_contig: 最好的被比对的contig
  • second_hit_contig: 第二个被比对的contig
  • best_match_coverage: 最好的匹配覆盖度
  • max_match_coverage : 最高的匹配深度
  • reassignment: 标记为haplotype 还是 repeat,或者是keep

由于我们用的是单倍型组装primary contigs而不是二倍体组装的parimary + haplotigs, 因此我们需要将FALCON_Unzip的haplotgi合并到重新分配的haplotigs中,这样子我们依旧拥有二倍体组装结果

cat cns_h_ctg.fasta >> curated.haplotigs.fasta

原理介绍

为什么第一步的 read 覆盖深度分析能判断基因组是否冗余呢?这是因为对于坍缩的单倍型,那么含有等位的基因的read只能比对到该位置上,而如果杂合度太高被拆分成两个不同的contig,那么含有等位的基因的read就会分别比对到不同的read上,导致深度降低一半。下图A就是一个典型的包含冗余基因组的read覆盖度分布

2013053-2f26047d1da456f5.png
read-深度分析

分析流程的第二步的任务就是人工划分出如下图B部分,绿色的部分是坍缩单倍型contig,蓝色的部分是潜在的冗余contig。之后,分析流程会计算这些区域中的contig的覆盖度。 对于绿色部分中的contig,如果覆盖度低于80%, 会进行标记用于后续分析。如果深度非常低,那么很有可能就是组装引入错误,深度非常高的部分基本就是重复序列或者是细胞器的contig,这些黄色的contig可以在后续的组装出分开。

2013053-0ae4a373254ca9e8.png
划分区间

第三步就是同源序列进行识别和分配。所有标记的contig之后会用Minimap2在整个组装进行搜索,寻找相似度较高的离散区间(如下图C)。如果一个Contig的联配得分大于阈值(默认70%), 那么就会被标记为haplotigs. 如果一个contig的最大联配得分大于阈值(默认250%), 会被标记成重复序列,这有可能是潜在的有问题contig,或许是坍缩的contig或者低复杂度序列。

2013053-ca64a560ff4099bd.png
移除haplotigs

推荐阅读

  • Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies
  • https://bitbucket.org/mroachawri/purge_haplotigs

这篇关于使用purge_haplogs处理基因组杂合区域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402801

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1