大数据项目:职务分析(一)——数据获取

2023-11-21 11:30

本文主要是介绍大数据项目:职务分析(一)——数据获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目介绍:该项目适合学习的时候使用,因为项目比较小,主要目的对猎聘当中的各个岗位的数据的获取和简单的分析,从多个方面分析岗位之间的关系以及薪资的差异。

采用的技术有:

python爬虫:

hadoop:hdfs存储数据

hive on spark : 进行数据分析

sqoop: 将分析的结果传输到关系型数据库当中

superset:进行数据的可视化

首先是将数据从猎聘官网当中获取:

爬取技术一栏当中的似是一个岗位对应的数据。

先获得各个岗位的url,进行跳转,在每个网页当获取有用的信息:比如:岗位,地址,薪资,公司规模,要求掌握的技术,学历要求和经验要求,最后,对这一页的数据爬取完之后,进行跳转,通过find-element-by-xpath(),来锁定到下一页的链接上,跳转到下一页再进行数据的爬取,如此往复,从而,得到所有的想要的数据。 

 话不多说,代码实现为:

from selenium import webdriver
from selenium.webdriver.chrome.webdriver import Options
from lxml import etree
import osdef share_brower():chrome_options = Options()# chrome_options.add_argument('--headless')   # 来判断浏览器的前后台运行,有图形化可以更好的展现她的活动chrome_options.add_argument('--disable-gpu')path='C:\Program Files (x86)\Google\Chrome\Application\chrome.exe'chrome_options.binary_location = pathbrower = webdriver.Chrome(chrome_options=chrome_options)return browerdef save(source, number, name1):tree = etree.HTML(source)position = tree.xpath('//ul/li//div[@class="job-title-box"]/div[1]/text()')addr = tree.xpath('//ul/li//div[@class="job-title-box"]/div[2]/span[2]/text()')salary = tree.xpath('//ul/li//div[@class="job-detail-header-box"]/span/text()')company = tree.xpath('//ul/li//div[@class="job-company-info-box"]/span/text()')scale = tree.xpath('//ul/li//div[@class="job-company-info-box"]/div[@class="company-tags-box ellipsis-1"]/span[last()]/text()')experience = tree.xpath('//ul/li//div[@class="job-labels-box"]/span[1]/text()')xueli = tree.xpath('//ul/li//div[@class="job-labels-box"]/span[2]/text()')keyword = tree.xpath('//ul/li//div[@class="job-labels-box"]/span/text()')mi = min(len(position), len(addr), len(salary), len(company), len(scale), len(xueli), len(experience))with open('./date/' + name1.strip() + "/" + str(number) + '.csv', 'w', encoding='utf-8') as fs:for l in range(mi):new = position[l] + ',' + addr[l] + ',' + salary[l] + ',' + company[l] + ',' + scale[l]+','+experience[l]+','+xueli[l]+'\t\n'fs.write(new)fs.close()with open('./keyword.txt', 'a', encoding='utf-8') as fs:ne = ''for i in keyword:ne = ne + i + ' 'fs.write(ne)fs.close()base_url = 'https://www.liepin.com'
brower = share_brower()
brower.get('https://www.liepin.com/it/')
brower.implicitly_wait(3)
page = brower.page_source
tree = etree.HTML(page)
name = tree.xpath('//ul[@class="sidebar float-left"]/li[1]//dd/a/text()')
url = tree.xpath('//ul[@class="sidebar float-left"]/li[1]//dd/a/@href')
for i in range(len(name)):if not os.path.exists('./date/'+name[i]):os.mkdir('./date/'+name[i]) #创建文件夹brower.get(base_url+url[i])brower.implicitly_wait(3)source = brower.page_sourcenumber = 1save(source, number, name[i])print(name[i])try:for j in range(9):element = brower.find_element_by_xpath('//div[@class="list-pagination-box"]//li[last()]/a')element.click()save(brower.page_source, number, name[i])number += 1except RuntimeError:print("*"*30+"有错误,但是可以执行的哦!!")continueelse:print("文件已经存在")os.rmdir('./date/'+name[i])continue
## //ul[@class="sidebar float-left"]/li[1]//dd/a/text() 相关职业
# //ul[@class="sidebar float-left"]/li[1]//dd/a/@href  对应的连接 每个连接底下都有十个页面 、爬取当中的数据
# 数据的存放 总共有49个类别的技术岗位 分别放在49个问价夹底下,文件夹以对应的职业命名 底下十个文件,每个文件表示每一页的数据
# ,文件的命名方式以1-10.csv ,保存的时候中间以逗号隔开,保存当当前的路径底下,然后爬取成功之后同意上传到大数据集
# 群的本地文件夹下面# //ul/li//div[@class="job-title-box"]/div[1]/text()  职位
# //ul/li//div[@class="job-title-box"]/div[2]/span[2]/text()  地址
# //ul/li//div[@class="job-detail-header-box"]/span/text()   薪资
# //ul/li//div[@class="job-company-info-box"]/span/text()   企业
# //ul/li//div[@class="job-company-info-box"]/div[@class="company-tags-box ellipsis-1"]
# /span[last()]/text() 公司规模
# //ul/li//div[@class="job-labels-box"]/span[1]/text()   工作经验
# //ul/li//div[@class="job-labels-box"]/span[2]/text()  招聘学历要求
# //ul/li//div[@class="job-labels-box"]/span/text()   //用正则将数据的后序删除掉,或者在hadoop当中处理
# //div[@class="list-pagination-box"]//li[last()] 下一页的标签 循环九次brower.quit()
# 最后退出

 最后结果为:

 

 

 每一层和里面的数据保存形式,都如上所述,后序通过简单的mapreduce实现数据的处理,上传至hdfs当中,下期继续。。。。

这篇关于大数据项目:职务分析(一)——数据获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402084

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分