【miniQMT实盘量化4】获取实时行情数据

2023-11-21 07:44

本文主要是介绍【miniQMT实盘量化4】获取实时行情数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

上篇,我们介绍了如何获取历史数据,有了历史数据,我们可以进行分析和回测。但,下一步,我们更需要的是实时数据,只有能有效的监控实时行情数据,才能让我们变成市场上的“千里眼,顺风耳”。

接口汇总

与获取实时数据相关的接口,有以下几个

xtdata.get_full_tick()
xtdata.subscribe_whole_quote()
xtdata.subscribe_quote()
xtdata.unsubscribe_quote()

后文逐一展开说明。

实时行情 vs 历史行情

我们先探讨一下什么是实时行情,其实,实时,无非就是很近的历史,我们希望这个时间越近越好。获取到的最新行情的时间越接近他产生的时间,那就更多的获得了优先决策权。虽然几秒或者几百毫秒,对于人类而言微乎其微,但对于计算机来讲,可以做很多事。

订阅 vs 获取

熟悉编程设计模式的朋友,对“订阅”这个概念,不会陌生,但也有可能一部分非专业的朋友不太了解,我这里通俗易懂解释一下。

普通获取数据的接口,调用成功一次,会返回一次数据结果。那想想我们获取实时数据的场景,我们需要持续、不停的获取某一数据的最新值,那我就要持续轮询调用这个接口才能完成,对吧,比如,一秒调用一次。但这里存在一个问题,你也不知道最新数据是何时来的,假如若是最新数据0.5秒之后就已经更新了呢,那我们就浪费了0.5秒的机会,对吧。

而对于订阅模式的接口来讲,一旦这个接口被订阅成功,在之后的时间里,它会主动的给你推送数据最新数据,一般这种接口都会有一个callback函数作为参数,每次最新数据来的时候,该callback函数就会被调用一次(后面我们会结合具体例子演示)。这样,我们就降低了获取数据的延时性,数据会第一时间返回到我们的程序中。

那对应于本文要阐述的接口,get_full_tick就是普通获取接口,而subscribe_quotesubscribe_whole_quote就是订阅接口。另外,对于订阅接口,往往需要一个取消订阅的接口来解除订阅,不然数据将会一直推送,unsubscribe_quote的作用就是这个。

get_full_tick

这是全推数据的主动获取接口,所谓全推数据,就是当前时间最新的市场横截面数据。

这里没什么复杂的,只有一个参数,就是传入代码的数组,返回值是一个以股票代码为key的字典,对应的值就是该股票最新的tick数据。如果是非交易时间,这里返回了上一个交易日最后一个tick数据。

注意,此接口是不能传period参数,返回的数据默认是最新的tick周期数据。

from xtquant import xtdatares = xtdata.get_full_tick(['600519.SH'])res['600519.SH']

在这里插入图片描述

subscribe_whole_quote(推荐)

这是订阅全推数据的接口,与get_full_tick功能类似,只是模式不同,此接口采用订阅模式。

from xtquant import xtdatadef on_data (datas):print(datas)seq = xtdata.subscribe_whole_quote(code_list=['600519.SH'], callback=on_data)xtdata.run()

这里的xtdata.run()并不一定是必须的,这行代码只是为了阻塞该段代码一直处于运行状态,由于我们是订阅模式的接口,只要不取消订阅,就会一直返回数据。所以让程序处于一直运行状态比较好。

在这里插入图片描述

可以看到,on_data方法会被一直调用,每次都返回最新的tick。此接口只有两个参数code_listcallback,callback传入一个方法,具体的返回数据在这个方法中处理,落实到我们的例子中,就是on_data方法。

下面,我们再测试一下订阅的返回时间和速度,为代码解析返回数据的时间戳,并与当前系统时间做对比

from xtquant import xtdata
from datetime import datetime
import timedef on_data (datas):tick_time = datas['600519.SH']['time']timestamp_seconds = tick_time / 1000readable_time = datetime.fromtimestamp(timestamp_seconds).strftime('%Y-%m-%d %H:%M:%S.%f')# 获取当前时间戳(秒级)current_timestamp_seconds = time.time()current_readable_time = datetime.fromtimestamp(current_timestamp_seconds).strftime('%Y-%m-%d %H:%M:%S.%f')print(readable_time)print(current_readable_time)print(datas)seq = xtdata.subscribe_whole_quote(code_list=['600519.SH'], callback=on_data)xtdata.run()

根据下面的结果,我们可以得知:

1、该数据每三秒返回一次,也就是每三秒产生一个tick,这就是目前实时数据的最小时间单位。
2、返回的时间戳时间解析后,是大于系统时间的,大致是大个0.5~0.6秒之间,我认为这个时间戳应该是做了提前处理,以保证获取到数据的时间与系统时间接近。
在这里插入图片描述

subscribe_quote

这是,单股订阅接口。最大的特点是,每次订阅只能传入一只股票代码,且该接口具有period参数,可以不止获取tick级别的数据。

from xtquant import xtdata
from datetime import datetime
import timedef on_data (datas):tick_time = datas['600519.SH'][0]['time']timestamp_seconds = tick_time / 1000readable_time = datetime.fromtimestamp(timestamp_seconds).strftime('%Y-%m-%d %H:%M:%S.%f')# 获取当前时间戳(秒级)current_timestamp_seconds = time.time()current_readable_time = datetime.fromtimestamp(current_timestamp_seconds).strftime('%Y-%m-%d %H:%M:%S.%f')print(readable_time)print(current_readable_time)print(datas)seq = xtdata.subscribe_quote(stock_code='600519.SH', period='tick', callback=on_data)xtdata.run()

可以看到,返回结果与subscribe_whole_quote区别不大,只是值多了一层数组。

在这里插入图片描述
这个接口可以将peroid设为1m,1h,1d等,但其订阅频率依旧是三秒一次,比如,当订阅1m也就是分钟线时,会每三秒返回当前分钟线的最新值,也就是分钟线的收盘价会不停变化。

另外,根据迅投官方的声明,这个单股订阅的接口不宜订阅过多,性能上也不如全推订阅。

在这里插入图片描述
所以,个人建议订阅实时数据时,最好还是使用全推订阅接口。如果想监听分钟线、小时线、或日线这种频率较低的数据,完全可以用轮询获取最新历史数据的方法,来代替。

unsubscribe_quote

这是取消订阅的接口,其实也是相当重要,订阅模式的接口,不同于普通接口,一旦订阅成功,就会有一个进程一直在监听并返回数据,当不在需要订阅时,需要显示的调用取消订阅接口,才能停止此次订阅。若大量调用订阅且不及时取消时,可能会造成大量的CPU和内存占用。

from xtquant import xtdata
import timedef on_data (datas):print(datas)seq = xtdata.subscribe_whole_quote(code_list=['600519.SH'], callback=on_data)time.sleep(10)xtdata.unsubscribe_quote(seq)print('取消订阅成功')

在本例中,我们首先调用全推订阅接口,该接口会返回一个订阅号seq,然后我们阻塞程序10秒钟,10秒钟后取消订阅。可以看到下图,程序运行10秒后终止,且订阅也被取消。

在这里插入图片描述

在实际使用中,可以根据自己的需要,在适合的时机调用unsubscribe_quote,比如程序终止前,或者有GUI的应用,也可以设计一个按钮负责取消订阅。

交易时间段内使用

需要注意的是,本文提到的两个订阅接口,在非交易时间都是无法触发callback的,也就是说,在使用或者测试这两个接口时,要选在开盘时间内,盘后在测试实时数据接口,是比较困难的。

总结

关于如何获取实时数据的内容,就讨论到这里。实时数据,是做量化实盘交易的数据基础,一个稳定,好用的实时数据源,可以更好的帮我们实现实盘量化策略。

miniQMT在这个功能上提供了实时订阅的模式,功能相对来说比较完善。

miniQMT具体开通方法及要求,可以参看《QMT开通规则分享》

这篇关于【miniQMT实盘量化4】获取实时行情数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/400879

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片