OCO系列卫星数据批量转格式(netCDF转CSV、Tiff)

2023-11-21 05:50

本文主要是介绍OCO系列卫星数据批量转格式(netCDF转CSV、Tiff),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OCO系列卫星数据批量转格式实现在GIS软件中处理

从官网上下载得到的OCO卫星数据是以nc4后缀结尾的netCDF文件,在上一篇博客中已经介绍了利用Plotly库进行单幅图像可视化的方法,接下来为了方便在GIS软件里进一步处理,可以对nc格式的文件进行格式转换。

netCDF转CSV

使用的语言依然是Python,用到的库有以下:

import glob
import shutil
import pandas as pd
import os
import netCDF4 as nc
# converting the datetime format
from datetime import datetime

由于输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:

def conv_date(d):return datetime.strptime(str(d), '%Y%m%d%H%M%S%f')

接下来封装一个名为convHdf的函数来将nc格式的文件转换为csv格式。

def convHdf(path_file, out_path, n=0):data = nc.Dataset(path_file)df_xco2 = pd.DataFrame()

这里构建了一个名为df_xco2的数据表,包含了Xco2、Latitude等八个列,其中每个列中的填充数据分别对应于netCDF4包读取到的原始文件中的变量(variables):

df_xco2['Xco2'] = data.variables['xco2'][:]df_xco2['Latitude'] = data.variables['latitude'][:]df_xco2['Longitude'] = data.variables['longitude'][:]df_xco2['quality_flag'] = data.variables['xco2_quality_flag'][:]# Datedf_xco2['DateTime'] = data.variables['sounding_id'][:]# Convert soundingID to datetime formatdf_xco2['DateTime'] = df_xco2['DateTime'].apply(conv_date)df_xco2['DateTime'] = pd.to_datetime(df_xco2['DateTime'])# YEAR and month columndf_xco2['Year'] = df_xco2['DateTime'].dt.yeardf_xco2['Month'] = df_xco2['DateTime'].dt.monthdf_xco2['Day'] = df_xco2['DateTime'].dt.day

为了缩小数据量,设置仅通过质量检验的数据可以被保留:

df_xco2 = df_xco2[df_xco2['quality_flag'] == 0]

为了方便对输出文件进行命名,再定义一个date变量:

date = str(data.variables['sounding_id'][0])

设置输出路径

    # create a CSV and store on new folder: csv_filesdf_xco2.to_csv(out_path + '\\' + 'oco2_xco2_' + date + '_.csv', index=False)

以上就是格式转换的主体方法,为了实现批量处理,再封装一个批量处理的函数,名为nc_to_tiff:

def nc_to_tiff(Input_folder, end_name='nc4'):Output_folder = os.path.split(Input_folder)[0] + 'out_' + os.path.split(Input_folder)[-1]data_list = glob.glob(Input_folder + os.sep + '*' + end_name)print('输入位置为', Input_folder)print('被读取的nc文件有', data_list)if os.path.exists(Output_folder):shutil.rmtree(Output_folder)os.makedirs(Output_folder)for i in range(len(data_list)):data = data_list[i]convHdf(path_file=data, out_path=Output_folder)print(data + 'finish')print(f'输入位置为{Input_folder}')print(f'输出位置为{Output_folder}')

调用函数,输入需要处理的nc4文件的路径,即可实现快速批量格式转换:

nc_to_tiff(Input_folder=r'E:/OCO-2', end_name='nc4')

csv格式转tiff

此时的.csv格式的文件已经可以直接在ArcGIS中处理了
在这里插入图片描述利用“点转栅格”工具可以将点要素网格化,像元大小可以随意指定,这里建议设置为0.02(单位为°),此时像元分辨率近似于2km,与数据点的间距近似,避免浪费数据信息。在这里插入图片描述
使用ArcGIS来栅格化,可以采用模型构建器来批量处理,也可以使用Arcpy进行批量处理。这里再介绍另一种基于GDAL命令行的栅格化方法。

import subprocess
import osif not os.path.exists('json_format'):os.makedirs('json_format')print('already')
else:print("Directory exists!")start_tabpy1 = subprocess.run('ogr2ogr -oo X_POSSIBLE_NAMES=Longitude -oo Y_POSSIBLE_NAMES=Latitude -a_srs "EPSG:4326" json_format/oco2_2022.json oco2_xco2_2022110100265935_.csv')
start_tabpy2 = subprocess.run('mkdir tif_format', shell=True)
start_tabpy3 = subprocess.run('gdal_rasterize -a Xco2 -a_nodata 0 -ts 999 999 json_format/oco2_2022.json tif_format/oco2_2022.tif')

由于代码是从jupyter中导出的,需要结合subprocess和shell来运行。-a_srs用来指定投影,-ts用来设置图像的大小,最大可设置长999和宽999,不同的图像大小占用的内存和粒度大小也不同,可以根据需求进行调整。

这篇关于OCO系列卫星数据批量转格式(netCDF转CSV、Tiff)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400253

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Ubuntu向多台主机批量传输文件的流程步骤

《Ubuntu向多台主机批量传输文件的流程步骤》:本文主要介绍在Ubuntu中批量传输文件到多台主机的方法,需确保主机互通、用户名密码统一及端口开放,通过安装sshpass工具,准备包含目标主机信... 目录Ubuntu 向多台主机批量传输文件1.安装 sshpass2.准备主机列表文件3.创建一个批处理脚

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性