使用numba cuda 加速Python运算

2023-11-20 21:44

本文主要是介绍使用numba cuda 加速Python运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用numba cuda 加速Python运算

  • 1.随机数生成
  • 参考文献

习惯了cuda c,可能会认为cuda和c才是黄金档搭。

Python作为一种开发效率比较高的脚本语言,有助于我们快速实现某种功能。

但是Python执行效率极其之慢。

这种情况下,用cuda的高并发特性,来提升Python执行速度,是一种很好的选择。

1.随机数生成

随机数生成是一项很重要的功能。

当Python自带的random,np.random在cuda函数中无法直接使用时,这是一个非常头疼的事。

有一个方法是将随机数/序列提前在cuda函数外实现好,再传递给cuda核函数使用,但是这就要占用cuda的显存,同时还要考虑加载数据的时间。

幸好的事numba提供了numba.cuda.random,可以便于我们生成随机数。

numba random官方网页中提供了一个示例,通过均匀分布来实现pi的计算。

由于numba.cuda.random.xoroshiro128p_normal_float64默认生成 N ( 0 , 1 ) N(0,1) N(0,1)分布序列。

这里提供一个使用numba.cuda.random来生成复合高斯分布(如均值为100,方差为30的)的随机数:

N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布的序列转成 N ( 0 , 1 ) N(0,1) N(0,1),标准化公式为:

y = x − μ δ \qquad\qquad y=\cfrac{x-\mu}{\sqrt{\delta}} y=δ xμ

故从有 N ( 0 , 1 ) N(0,1) N(0,1)分布的序列转成 N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布,为:

y = δ ⋅ x + μ \qquad\qquad y=\sqrt{\delta} \cdot x+\mu y=δ x+μ

代码如下:

from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float64import numpy as np
import math@cuda.jit
def random_gen(rng_states,  out):"""Find the maximum value in values and store in result[0]"""thread_id = cuda.grid(1)print("thread_id",thread_id)out[thread_id]=xoroshiro128p_normal_float64(rng_states, thread_id)out[thread_id]=int(out[thread_id]*math.sqrt(30)+100)threads_per_block = 16
blocks = 16
rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=1)
out = np.zeros((threads_per_block * blocks), dtype=np.float32)
out_d = cuda.to_device(out)
random_gen[blocks, threads_per_block](rng_states, out_d)
out = out_d.copy_to_host()
print('\n', out)

产生如下序列:

 [ 92. 100.  97. 101.  95. 103. 101. 105.  92. 101. 100.  97.  91.  90.97. 104. 100.  98.  97. 102. ...]

用numpy可求得均值和方差分别为:

99.609375  30.902099609375

生成整数随机序列,可以通过均匀分布,再经过适当放缩、平移实现,如采用(0,1)均匀分布实现[0,100]整数的均匀采样:

int(100*xoroshiro128p_uniform_float64(rng_states, col))

参考文献

[1] https://numba.readthedocs.io/en/stable/
[2] 基于 Numba 的 CUDA Python 编程简介
[3] https://numba.pydata.org/numba-doc/latest/cuda/random.html

这篇关于使用numba cuda 加速Python运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397640

相关文章

SpringBoot3中使用虚拟线程的完整步骤

《SpringBoot3中使用虚拟线程的完整步骤》在SpringBoot3中使用Java21+的虚拟线程(VirtualThreads)可以显著提升I/O密集型应用的并发能力,这篇文章为大家介绍了详细... 目录1. 环境准备2. 配置虚拟线程方式一:全局启用虚拟线程(Tomcat/Jetty)方式二:异步

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化: