python机器学习聚类实例之31个省份的居民消费聚类(包含数据)

2023-11-20 15:40

本文主要是介绍python机器学习聚类实例之31个省份的居民消费聚类(包含数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据介绍

现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八个主要变量数据,这八个变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实际数据(直接复制到当前工程下的city.txt文件中)

北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64
天津,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08
河北,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63
山西,1406.33,477.77,290.15,208.57,201.50,414.72,281.84,212.10
内蒙古,1303.97,524.29,254.83,192.17,249.81,463.09,287.87,192.96
辽宁,1730.84,553.90,246.91,279.81,239.18,445.20,330.24,163.86
吉林,1561.86,492.42,200.49,218.36,220.69,459.62,360.48,147.76
黑龙江,1410.11,510.71,211.88,277.11,224.65,376.82,317.61,152.85
上海,3712.31,550.74,893.37,346.93,527.00,1034.98,720.33,462.03
江苏,2207.58,449.37,572.40,211.92,302.09,585.23,429.77,252.54
浙江,2629.16,557.32,689.73,435.69,514.66,795.87,575.76,323.36
安徽,1844.78,430.29,271.28,126.33,250.56,513.18,314.00,151.39
福建,2709.46,428.11,334.12,160.77,405.14,461.67,535.13,232.29
江西,1563.78,303.65,233.81,107.90,209.70,393.99,509.39,160.12
山东,1675.75,613.32,550.71,219.79,272.59,599.43,371.62,211.84
河南,1427.65,431.79,288.55,208.14,217.00,337.76,421.31,165.32
湖南,1942.23,512.27,401.39,206.06,321.29,697.22,492.60,226.45
湖北,1783.43,511.88,282.84,201.01,237.60,617.74,523.52,182.52
广东,3055.17,353.23,564.56,356.27,811.88,873.06,1082.82,420.81
广西,2033.87,300.82,338.65,157.78,329.06,621.74,587.02,218.27
海南,2057.86,186.44,202.72,171.79,329.65,477.17,312.93,279.19
重庆,2303.29,589.99,516.21,236.55,403.92,730.05,438.41,225.80
四川,1974.28,507.76,344.79,203.21,240.24,575.10,430.36,223.46
贵州,1673.82,437.75,461.61,153.32,254.66,445.59,346.11,191.48
云南,2194.25,537.01,369.07,249.54,290.84,561.91,407.70,330.95
西藏,2646.61,839.70,204.44,209.11,379.30,371.04,269.59,389.33
陕西,1472.95,390.89,447.95,259.51,230.61,490.90,469.10,191.34
甘肃,1525.57,472.98,328.90,219.86,206.65,449.69,249.66,228.19
青海,1654.69,437.77,258.78,303.00,244.93,479.53,288.56,236.51
宁夏,1375.46,480.89,273.84,317.32,251.08,424.75,228.73,195.93
新疆,1608.82,536.05,432.46,235.82,250.28,541.30,344.85,214.40

实验目的

通过聚类,了解1999年各个省份的消费水平在国内的情况

实现代码和注解
  • 输出的给各个城市打上的标签
[3 1 2 2 2 2 2 2 3 0 1 0 1 2 2 2 0 0 3 0 0 1 0 2 0 1 2 2 2 2 2]
  • 形成的簇的中心的数组:关于这里就不是很懂,32个数据,四组是因为有四个簇,而且将下述的数据当做expense,这是什么理由?
 [[2004.785       429.48        347.8925      190.955       287.66625581.16125     437.2375      233.09625   ][2549.658       582.118       488.366       268.998       397.442618.92        477.946       295.172     ][1525.81533333  478.672       322.88266667  232.4         236.41866667457.53133333  344.81866667  190.21933333][3242.22333333  544.92        735.78        405.51333333  602.251016.62        760.52333333  446.82666667]]
  • 具体的代码以及注解
import numpy as np
from sklearn.cluster import KMeansdef loadData(filePath):# 打开文件流fr = open(filePath, 'r+',encoding='UTF-8')# 完整的读取,一次性读取整个文件,按行读取lines = fr.readlines()# 将读入的数据进行拆分,分为数据和城市名retData = []retCityName = []for line in lines:# 去除字符串首尾的空格或者回车,并使用“,”进行分割items = line.strip().split(",")# 每一行的开头是城市名臣retCityName.append(items[0])# 将数据组合成一个列表,并且强制转换类型为float浮点型retData.append([float(items[i]) for i in range(1, len(items))])return retData, retCityNameif __name__ == '__main__':# 使用读取数据,获取城市名和相关的数据data, cityName = loadData('city.txt')# 创建指定簇数量KMeans对象实例km = KMeans(n_clusters=4)# 加载数据,进行训练,获得标签,总共是四个簇,就是四个标签,将给31个数据,每个数据都打上0-3的标签label = km.fit_predict(data)# 计算出每一个簇形成的所有的行内的数据,计算出该簇内的数据的和expenses = np.sum(km.cluster_centers_, axis=1)# 总共是四个标签,四个集合,按照打上的标签将城市名进行分类CityCluster = [[], [], [], []]# 遍历所有的标签,并将对应的城市根据标签加上对应的簇中for i in range(len(cityName)):CityCluster[label[i]].append(cityName[i])# 遍历所有的簇中心的数量,总共就只有四个,进行打印输出for i in range(len(CityCluster)):print("Expenses:%.2f" % expenses[i])print(CityCluster[i])
  • 运行结果
    在这里插入图片描述

这篇关于python机器学习聚类实例之31个省份的居民消费聚类(包含数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395685

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal