python机器学习聚类实例之31个省份的居民消费聚类(包含数据)

2023-11-20 15:40

本文主要是介绍python机器学习聚类实例之31个省份的居民消费聚类(包含数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据介绍

现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八个主要变量数据,这八个变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实际数据(直接复制到当前工程下的city.txt文件中)

北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64
天津,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08
河北,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63
山西,1406.33,477.77,290.15,208.57,201.50,414.72,281.84,212.10
内蒙古,1303.97,524.29,254.83,192.17,249.81,463.09,287.87,192.96
辽宁,1730.84,553.90,246.91,279.81,239.18,445.20,330.24,163.86
吉林,1561.86,492.42,200.49,218.36,220.69,459.62,360.48,147.76
黑龙江,1410.11,510.71,211.88,277.11,224.65,376.82,317.61,152.85
上海,3712.31,550.74,893.37,346.93,527.00,1034.98,720.33,462.03
江苏,2207.58,449.37,572.40,211.92,302.09,585.23,429.77,252.54
浙江,2629.16,557.32,689.73,435.69,514.66,795.87,575.76,323.36
安徽,1844.78,430.29,271.28,126.33,250.56,513.18,314.00,151.39
福建,2709.46,428.11,334.12,160.77,405.14,461.67,535.13,232.29
江西,1563.78,303.65,233.81,107.90,209.70,393.99,509.39,160.12
山东,1675.75,613.32,550.71,219.79,272.59,599.43,371.62,211.84
河南,1427.65,431.79,288.55,208.14,217.00,337.76,421.31,165.32
湖南,1942.23,512.27,401.39,206.06,321.29,697.22,492.60,226.45
湖北,1783.43,511.88,282.84,201.01,237.60,617.74,523.52,182.52
广东,3055.17,353.23,564.56,356.27,811.88,873.06,1082.82,420.81
广西,2033.87,300.82,338.65,157.78,329.06,621.74,587.02,218.27
海南,2057.86,186.44,202.72,171.79,329.65,477.17,312.93,279.19
重庆,2303.29,589.99,516.21,236.55,403.92,730.05,438.41,225.80
四川,1974.28,507.76,344.79,203.21,240.24,575.10,430.36,223.46
贵州,1673.82,437.75,461.61,153.32,254.66,445.59,346.11,191.48
云南,2194.25,537.01,369.07,249.54,290.84,561.91,407.70,330.95
西藏,2646.61,839.70,204.44,209.11,379.30,371.04,269.59,389.33
陕西,1472.95,390.89,447.95,259.51,230.61,490.90,469.10,191.34
甘肃,1525.57,472.98,328.90,219.86,206.65,449.69,249.66,228.19
青海,1654.69,437.77,258.78,303.00,244.93,479.53,288.56,236.51
宁夏,1375.46,480.89,273.84,317.32,251.08,424.75,228.73,195.93
新疆,1608.82,536.05,432.46,235.82,250.28,541.30,344.85,214.40

实验目的

通过聚类,了解1999年各个省份的消费水平在国内的情况

实现代码和注解
  • 输出的给各个城市打上的标签
[3 1 2 2 2 2 2 2 3 0 1 0 1 2 2 2 0 0 3 0 0 1 0 2 0 1 2 2 2 2 2]
  • 形成的簇的中心的数组:关于这里就不是很懂,32个数据,四组是因为有四个簇,而且将下述的数据当做expense,这是什么理由?
 [[2004.785       429.48        347.8925      190.955       287.66625581.16125     437.2375      233.09625   ][2549.658       582.118       488.366       268.998       397.442618.92        477.946       295.172     ][1525.81533333  478.672       322.88266667  232.4         236.41866667457.53133333  344.81866667  190.21933333][3242.22333333  544.92        735.78        405.51333333  602.251016.62        760.52333333  446.82666667]]
  • 具体的代码以及注解
import numpy as np
from sklearn.cluster import KMeansdef loadData(filePath):# 打开文件流fr = open(filePath, 'r+',encoding='UTF-8')# 完整的读取,一次性读取整个文件,按行读取lines = fr.readlines()# 将读入的数据进行拆分,分为数据和城市名retData = []retCityName = []for line in lines:# 去除字符串首尾的空格或者回车,并使用“,”进行分割items = line.strip().split(",")# 每一行的开头是城市名臣retCityName.append(items[0])# 将数据组合成一个列表,并且强制转换类型为float浮点型retData.append([float(items[i]) for i in range(1, len(items))])return retData, retCityNameif __name__ == '__main__':# 使用读取数据,获取城市名和相关的数据data, cityName = loadData('city.txt')# 创建指定簇数量KMeans对象实例km = KMeans(n_clusters=4)# 加载数据,进行训练,获得标签,总共是四个簇,就是四个标签,将给31个数据,每个数据都打上0-3的标签label = km.fit_predict(data)# 计算出每一个簇形成的所有的行内的数据,计算出该簇内的数据的和expenses = np.sum(km.cluster_centers_, axis=1)# 总共是四个标签,四个集合,按照打上的标签将城市名进行分类CityCluster = [[], [], [], []]# 遍历所有的标签,并将对应的城市根据标签加上对应的簇中for i in range(len(cityName)):CityCluster[label[i]].append(cityName[i])# 遍历所有的簇中心的数量,总共就只有四个,进行打印输出for i in range(len(CityCluster)):print("Expenses:%.2f" % expenses[i])print(CityCluster[i])
  • 运行结果
    在这里插入图片描述

这篇关于python机器学习聚类实例之31个省份的居民消费聚类(包含数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395685

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: