数值分析:对系数矩阵与向量加扰动后求出解向量

2023-11-20 14:30

本文主要是介绍数值分析:对系数矩阵与向量加扰动后求出解向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解答

    • 题目
    • 思路
    • 过程
    • 代码

题目

在这里插入图片描述

思路

将高斯消去法改写为紧凑形式,可以直接从矩阵A的元素计算出L,U元素的递推公式,因此可以使A分解为L和U。利用LU分解法,求解Ax=b等价于求解Ly=b和Ux=y。
我定义了一个创建希尔伯特矩阵的函数,通过输入行数(列数)来输出一个n阶的希尔伯特矩阵。
为了验证LU分解的正确性,我写了一个矩阵乘积函数,来验证L,U乘积是否等于原来的希尔伯特矩阵。
然后根据题干所给的条件,定义一个创建向量b的函数,以求得b向量的数值。
再根据Ly=b和Ux=y,利用python里面的线性代数计算库scipy-linalg,给出L、b求出y,再给出U、y求出x。

过程

调用hilmat函数,创建希尔伯特矩阵。输出该矩阵。
在这里插入图片描述
调用写好了的LU分解函数,求得L,U矩阵。
在这里插入图片描述
调用矩阵乘积函数,求得L和U的乘积。输出,并与H矩阵比较,数值相同,证明分解成功。
在这里插入图片描述
调用创建向量b的函数。创建好向量b后,输出向量b。
在这里插入图片描述
接下来,根据Ly=b,Ux=y,调用linalg.solve函数,先后求得y向量和x向量。

(b)x向量即为希尔伯特矩阵n=6时的解向量。
在这里插入图片描述

(c)手动对希尔伯特矩阵做元素的扰动。分四种情况讨论。
1.a22和a66都增加pow(10,-7)时,解向量如下。
在这里插入图片描述
2.a22和a66都减少pow(10,-7)时,解向量如下。
在这里插入图片描述
3.a22增加pow(10,-7),a66减少pow(10,-7)时,解向量如下。
在这里插入图片描述

4.a22减少pow(10,-7),a66增加pow(10,-7)时,解向量如下。

在这里插入图片描述

(d)扰动分2种情况。
1.b6增加pow(10,-4)时,解向量如下。
在这里插入图片描述
2.b6减少pow(10,-4)时,解向量如下。
在这里插入图片描述

(e)结论:无论是A中元素的扰动,还是向量b元素的扰动,对解向量的值影响都很大。在A改变的元素与b改变的元素在同一个量级,且A元素扰动量级是b元素扰动量级的1/1000的条件下,两种情况造成的解向量的变化范围相当。因此相对而言,A中元素的扰动对解向量的影响更大。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 15 17:09:33 2020@author: uygfi
"""import numpy as np
import math
from scipy import linalg def matrixMul(A, B):if len(A[0]) == len(B):res = [[0] * len(B[0]) for i in range(len(A))]for i in range(len(A)):for j in range(len(B[0])):for k in range(len(B)):res[i][j] += A[i][k] * B[k][j]return resreturn ('输入矩阵有误!')def hilmat(a):#li=[[]]*ali = [[0] * a for i in range(a)]for i in range(a):for j in range(a):li[i][j]=math.pow((i+j+1),-1)return li#Doolittle分解法np.random.seed(2)
def LU_decomposition(A):n=len(A[0])L = np.zeros([n,n])U = np.zeros([n, n])for i in range(n):L[i][i]=1if i==0:U[0][0] = A[0][0]for j in range(1,n):U[0][j]=A[0][j]L[j][0]=A[j][0]/U[0][0]else:for j in range(i, n):#Utemp=0for k in range(0, i):temp = temp+L[i][k] * U[k][j]U[i][j]=A[i][j]-tempfor j in range(i+1, n):#Ltemp = 0for k in range(0, i ):temp = temp + L[j][k] * U[k][i]L[j][i] = (A[j][i] - temp)/U[i][i]return L,Udef xishu(H):#将b解出来length=len(H[0])V=[0]*lengthfor i in range(0,length):for j in range(0,length):V[i]+=H[i][j]return Vif __name__ == '__main__': H=hilmat(6)print("here is H matrix")print(H)L,U=LU_decomposition(H)print("here is L ,U")print("here is L:\n",L,'\n\n',"here is U:\n",U,'\n')ans=matrixMul(L,U)print(ans,"\n")print("here is the matrix product of L and U!\n\n",H)# LU分解b=xishu(H)print("\n",b,"\n")y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)print("---------------------------------")H[1][1]+=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]-=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")H[1][1]-=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]+=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")b=xishu(H)b[5]-=pow(10,-7)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)b[5]+=pow(10,-7)print("---------------------------------")

参考博客
https://blog.csdn.net/dgq18764215279/article/details/89201238

这篇关于数值分析:对系数矩阵与向量加扰动后求出解向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395280

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、