公开数据集:灵长类动物多通道感觉运动皮层电生理学的研究

本文主要是介绍公开数据集:灵长类动物多通道感觉运动皮层电生理学的研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology. 1
公开数据集网址:https://zenodo.org/records/3854034


目录

  • General Description
  • Possible uses
  • Variable names
  • Decoder Results
  • Videos
  • Supplements
  • Contact Information
  • Citation


General Description

该数据集包括:

  • 细胞外和同时记录的峰值的阈值跨越时间,排序成单位(最多5个,包括一个“散列”单位) ,以及排序的波形片段;
  • 触手指尖的 x,y 位置和触及目标的 x,y 位置(两者均以250赫兹采样)。

行为任务是使自我节奏达到目标排列在一个网格(例如8x8)没有间隔或移动前延迟间隔。一只猴子伸出右臂(左半球记录) ,另一只猴子伸出左臂(右半球)。在一些会议记录从 M1和 S1阵列(192个通道) ; 在大多数会议 M1记录是单独的(96个通道)。

来自两个灵长类受试者的数据包括: 猴子1(“ Indy”,跨越约10个月)的37个sessions和猴子2(“ Loco”,跨越约1个月)的10个sessions,分别达到约20,000次和猴子1和6,500次的2。

在这里插入图片描述

Possible uses

这些数据对于训练 BCI 解码器是理想的,特别是因为它们没有被分割成试验。我们期望该数据集对于那些希望设计改进的感觉运动皮层电刺激模型或者为比较不同的脑机接口解码器提供同等基础的研究人员将是有价值的。其他用途可能包括手臂运动学统计分析,尖峰噪声相关性或信号相关性,或用于探索会话期间细胞外记录的稳定性或变异性。

Variable names

每个文件包含以下格式的数据。在下面,n 表示记录通道的数量,u 表示排序单元的数量,k 表示样本的数量。

  • chan_names - n x 1
    • 信道标识符字符串的单元格数组,例如“ M1001”。
  • cursor_pos - k x 2
    • 光标在笛卡尔坐标系(x,y)中的位置,mm。
  • finger_pos - k x 3 or k x 6
    • 工作指尖在笛卡尔坐标系(z,-x,-y)中的位置,由手动跟踪器以厘米为单位报告。因此,光标位置是指尖位置的仿射变换,使用以下矩阵:
      ( 0 0 − 10 0 0 − 10 ) \begin{pmatrix} 0 & 0 \\ -10 & 0 \\ 0 & -10 \end{pmatrix}\ 01000010  
      注意,对于某些会话,finger_pos 还包括传感器的方向; 因此,完整状态是: (z,-x,-y,方位角,仰角,滚动)。
  • target_pos - k x 2
    • 目标在笛卡尔坐标系(x,y)中的位置,mm。
  • t - k x 1
    • 对应于 cursor_pos、 finger_pos 和 target_pos 的每个示例的时间戳,秒。
  • spikes - n x u
    • 尖峰事件向量的细胞阵列。单元格数组中的每个元素都是峰值事件时间戳的向量(以秒为单位)。第一个单元(u1)是“未排序”单元,这意味着它包含在该通道上的峰值被排序成其他单元(u2,u3等)后仍然存在的阈值交叉。对于一些会话峰值被排序成多达2个单元(即 u = 3) ; 对于其他会话,4个单元(u = 5)。
  • wf - n x u
    • 尖峰事件波形“片段”的单元阵列。细胞阵列中的每个元素都是尖峰事件波形的矩阵。每个波形对应一个“尖峰”的时间戳。波形样本是微伏的。

Decoder Results

这些数据被用来拟合解码器模型,如 Makin 等[1]所报道的。为了帮助与其他解码器进行比较,我们在文件 refh_result 中包含性能摘要(对于每个会话、解码器、 bin-width 等)。Csv,包含以下列:

  • session - 标识符,例如 “indy_20160407_02”
  • monkey - “indy” 或 “loco” 之一
  • num_neurons - 解码器中使用的特征总数
  • num_training_samples - 用于训练解码器的样本数(在指定的容量宽度)(从文件开始按顺序)
  • num_testing_samples - 用于评估解码器的样本数(顺序,直到文件结束)
  • kinematic_axis - “posx”, “posy”, “velx”, “vely”, “accx” 或 “accy” 之一
  • bin_width - “16”, “32”, “64” 或 “128” 之一
  • decoder - “regression”, “KF_observed”, “KF_static”, “KF_dynamic”, “UKF”, “rEFH_static” 或 “rEFH_dynamic” 之一
  • rsq - 决定系数,R2
  • snr - 信噪比,SNR = -10 log10(1-R2)

Videos

在一些session中,我们使用一个专用的硬件视频采集器记录刺激呈现显示的屏幕播放。因此,这些视频是对猴子受到的刺激和反馈的忠实表达,可以在以下会议中使用:

  • indy_20160921_01
  • indy_20160930_02
  • indy_20160930_05
  • indy_20161005_06
  • indy_20161006_02
  • indy_20161007_02
  • indy_20161011_03
  • indy_20161013_03
  • indy_20161014_04
  • indy_20161017_02

Supplements

从这个数据集中提取的原始宽带神经记录可用于以下session:

  • indy_20160622_01: doi:10.5281/zenodo.1488440
  • indy_20160624_03: doi:10.5281/zenodo.1486147
  • indy_20160627_01: doi:10.5281/zenodo.1484824
  • indy_20160630_01: doi:10.5281/zenodo.1473703
  • indy_20160915_01: doi:10.5281/zenodo.1467953
  • indy_20160916_01: doi:10.5281/zenodo.1467050
  • indy_20160921_01: doi:10.5281/zenodo.1451793
  • indy_20160927_04: doi:10.5281/zenodo.1433942
  • indy_20160927_06: doi:10.5281/zenodo.1432818
  • indy_20160930_02: doi:10.5281/zenodo.1421880
  • indy_20160930_05: doi:10.5281/zenodo.1421310
  • indy_20161005_06: doi:10.5281/zenodo.1419774
  • indy_20161006_02: doi:10.5281/zenodo.1419172
  • indy_20161007_02: doi:10.5281/zenodo.1413592
  • indy_20161011_03: doi:10.5281/zenodo.1412635
  • indy_20161013_03: doi:10.5281/zenodo.1412094
  • indy_20161014_04: doi:10.5281/zenodo.1411978
  • indy_20161017_02: doi:10.5281/zenodo.1411882
  • indy_20161024_03: doi:10.5281/zenodo.1411474
  • indy_20161025_04: doi:10.5281/zenodo.1410423
  • indy_20161026_03: doi:10.5281/zenodo.1321264
  • indy_20161027_03: doi:10.5281/zenodo.1321256
  • indy_20161206_02: doi:10.5281/zenodo.1303720
  • indy_20161207_02: doi:10.5281/zenodo.1302866
  • indy_20161212_02: doi:10.5281/zenodo.1302832
  • indy_20161220_02: doi:10.5281/zenodo.1301045
  • indy_20170123_02: doi:10.5281/zenodo.1167965
  • indy_20170124_01: doi:10.5281/zenodo.1163026
  • indy_20170127_03: doi:10.5281/zenodo.1161225
  • indy_20170131_02: doi:10.5281/zenodo.854733

Contact Information

我们将很高兴听到你如果你发现这个数据集有价值。通讯作者: J. E. O’Doherty joeyo@neuroengineer.com。

Citation

@misc{ODoherty:2017,  author = {O'{D}oherty, Joseph E. and Cardoso, Mariana M. B. and Makin, Joseph G. and Sabes, Philip N.},  title  = {Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex electrophysiology},  doi    = {10.5281/zenodo.788569},  url    = {https://doi.org/10.5281/zenodo.788569},  month  = may,  year   = {2017} 
}

  1. Makin, J. G., O’Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95 ↩︎

这篇关于公开数据集:灵长类动物多通道感觉运动皮层电生理学的研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393735

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口