ROOT学习——显示晶须定义的蜡烛图示例(candleplotwhiskers.C)

2023-11-11 21:10

本文主要是介绍ROOT学习——显示晶须定义的蜡烛图示例(candleplotwhiskers.C),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蜡烛图又称日本线、K线、阴阳线、棒线等,目前常用的说法百是“K线”以下统称K线。K线源于日本德川幕府时代(1603~1867年)的米市交易,用来计算米价每天的涨跌,后来把它引入股票市场价格走势的分析中,目前已成为股票、外汇技术分析中的重要方法。是技术分析的一种,最早为日本人于十九世纪所度创,被当时日本米市的商人用来记录米市的行知情与价格波动,包括开市价、收市价、最高价及最低价,阳烛代表当日升市,阴烛代表跌市。这种图表分析法在当时的中国以至整个东南亚地区均尤为流行。由于用这种方法绘制出来的图表形状颇似一根根蜡烛道,加上这些蜡烛有黑白之分,因而也叫阴阳线图表。通过K线图,人们能够把每日或某一周期的市况表现完全记录下来,股价经过一段时间的盘档后,在图上即形成一种特殊区域或形版态,不同的形态显示出不同意义。可以从这些形态的变化中摸索出一些有规律的东西出来。权K线图形态可分为反转形态、整理形态及缺口和趋向线等。后K线图因其细腻独到的标画方式而被引入到股市及期货市场。

Q1 (-25%): -0.675525 Median: 0.00168511 Q3 (+25%): 0.676189FCN=11.7941 FROM MIGRAD    STATUS=CONVERGED     138 CALLS         139 TOTALEDM=1.08103e-12    STRATEGY= 1      ERROR MATRIX ACCURATE EXT PARAMETER                                   STEP         FIRST   NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 1  Constant     3.72831e+03   1.82107e+02   4.21637e-02   1.36245e-082  Mean        -1.10774e-01   7.20921e-02   8.42717e-06  -1.49401e-043  Sigma        9.59469e-01   2.51499e-02   2.82317e-06   5.37129e-04FCN=8.04689 FROM MIGRAD    STATUS=CONVERGED     139 CALLS         140 TOTALEDM=6.08152e-08    STRATEGY= 1      ERROR MATRIX ACCURATE EXT PARAMETER                                   STEP         FIRST   NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 1  Constant     4.07186e+03   2.44580e+02   3.87026e-02   3.94837e-072  Mean        -2.92179e-02   8.71835e-02   7.07837e-06  -2.13598e-023  Sigma        1.00971e+00   2.88317e-02   2.27510e-06  -1.25158e-01FCN=6.93238 FROM MIGRAD    STATUS=CONVERGED     106 CALLS         107 TOTALEDM=6.56099e-08    STRATEGY= 1      ERROR MATRIX ACCURATE EXT PARAMETER                                   STEP         FIRST   NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 1  Constant     3.97002e+03   2.57596e+01   2.40433e-02  -9.00146e-062  Mean        -1.89022e-04   1.18284e-02   1.62701e-05   7.29142e-033  Sigma        1.02465e+00   3.35469e-02   1.82218e-05   7.40149e-03

下面给出具体代码步骤:

创建一个画板,将其纵向分为两块:

auto c1 = new TCanvas("c1","Candle Presets",700,800);
c1->Divide(1,2);

定义一个随机数,新建二维直方图和一维直方图:

auto rng = new TRandom();
auto h1 = new TH2I("h1","Gaus",100,-5,5,1,0,1);
auto h2 = new TH1I("h2","Gaus",100,-5,5);

设置直方图x、y轴标题:

h1->GetXaxis()->SetTitle("Standard deviation #sigma");
h2->GetXaxis()->SetTitle("Standard deviation #sigma");
h2->GetYaxis()->SetTitle("dN/d#sigma");

生成随机数填充直方图:

float myRand;
for (int i = 0; i < 100000; i++) {myRand = rng->Gaus(0,1);h1->Fill(myRand,0);h2->Fill(myRand);
}

定义分位数数组以及概率密度参数数组:

Double_t *q = new Double_t[3];
Double_t *p = new Double_t[3];
q[0] = 0.; q[1] = 0.; q[2] = 0.;
p[0] = 0.25; p[1] = 0.5; p[2] = 0.75;

获取h2分位数值:

h2->GetQuantiles(3,q,p);
//其中GetQuantitiles函数:
//输入参数
//    -此一维直方图(TH1F,D等)。 也可以是TProfile
//    -nprobSum数组q的最大大小和数组probSum的大小(如果给定)
//    -将计算分位数的位置的probSum数组。
//      如果probSum为null,则probSum将在内部进行计算,其大小=箱数+ h中的1。 它将对应于在直方图的最低边缘(分位数= 0)和bin的所有较高边缘计算的分位数。
//      如果probSum不为null,则假定至少包含nprobSum值。
//输出
//    -返回值nq(<= nprobSum)以及计算的分位数
//    -用nq分位数填充的数组q

输出获得的分位数:

cout << "Q1 (-25%): " << q[0] << " Median: " << q[1] << " Q3 (+25%): " << q[2] << endl;

定义3个一维直方图:

double iqr = q[2]-q[0];
auto mygaus_1_middle = new TF1("mygaus_1_middle","gaus",q[0],q[2]);
auto mygaus_1_left   = new TF1("mygaus_1_left","gaus",q[0]-1.5*iqr,q[0]);
mygaus_1_left->SetLineColor(kGreen);
auto mygaus_1_right  = new TF1("mygaus_1_right","gaus",q[2],q[2]+1.5*iqr);
mygaus_1_right->SetLineColor(kGreen);

绘制h1:

c1->cd(1); //定位到画板上半部分
h1->SetLineWidth(3); //设置线宽为3 
h1->SetFillStyle(0); //设置填充类型
h1->Draw("candley2 scat"); //用candley2类型绘制和散点图类型绘制

绘制h2:

c1->cd(2);
h2->Draw("");

对h2区间范围内进行拟合:

h2->Fit("mygaus_1_left","R"); //会自动输出拟合参数

不改变坐标轴对拟合函数进行绘制:

mygaus_1_left->Draw("same");

绘制图形线(q[0]-1.5*iqr的竖线):

auto l3 = new TLine(q[0]-1.5*iqr,0,q[0]-1.5*iqr,mygaus_1_left->Eval(q[0]-1.5*iqr)); //从(x1,y1)到(x2,y2)
l3->SetLineColor(kGreen); //设置线的颜色 
l3->SetLineWidth(2); //设置线的宽度
l3->Draw(""); //绘制

绘制图形线(q[0]的竖线):

auto l1 = new TLine(q[0]        ,0,q[0]        ,mygaus_1_left->Eval(q[0]));
l1->SetLineWidth(2);      
l1->SetLineColor(kGreen); 
l1->Draw("");

同理,拟合绘制右区间:

h2->Fit("mygaus_1_right","R","");
mygaus_1_right->Draw("same");
auto l4 = new TLine(q[2]+1.5*iqr,0,q[2]+1.5*iqr,mygaus_1_left->Eval(q[2]+1.5*iqr));
l4->SetLineColor(kGreen); 
l4->SetLineWidth(2);      
l4->Draw("");
auto l5 = new TLine(q[2]        ,0,q[2]        ,mygaus_1_right->Eval(q[2]));
l5->SetLineWidth(2);      
l5->SetLineColor(kGreen); 
l5->Draw("");

拟合绘制中间区间:

h2->Fit("mygaus_1_middle","R");
mygaus_1_middle->Draw("same");

向图像中添加文本(原则上,也可以通过h2-> Integral()计算这些值):

auto t = new TText(); t->SetTextFont(42); //设置本文格式
t->DrawText(0,mygaus_1_middle->Eval(0)/2,"50%"); //x坐标,y坐标,本文
t->DrawText(-1.5,mygaus_1_middle->Eval(-1.5)/2,"24.65%");
t->DrawText(+1,mygaus_1_middle->Eval(+1.5)/2,"24.65%");
t->DrawText(q[0]-1.5*iqr,1000,Form("%.3f",q[0]-1.5*iqr))->SetTextAngle(90); //设置文本角度
t->DrawText(q[2]+1.5*iqr,1000,Form("%.3f",q[2]+1.5*iqr))->SetTextAngle(90);
t->DrawText(q[0],1000,Form("%.3f",q[0]))->SetTextAngle(90);
t->DrawText(q[2],1000,Form("%.3f",q[2]))->SetTextAngle(90);

代码地址:https://github.com/root-project/root/blob/master/tutorials/hist/candleplotwhiskers.C

这篇关于ROOT学习——显示晶须定义的蜡烛图示例(candleplotwhiskers.C)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392850

相关文章

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF