数据分析实战 | SVM算法——病例自动诊断分析

2023-11-11 19:36

本文主要是介绍数据分析实战 | SVM算法——病例自动诊断分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、数据分析及对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型应用及评价


一、数据分析及对象

CSV文件——“bc_data.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88524905

该数据集主要记录了569个病例的32个属性,主要属性/字段如下:

(1)ID:病例的ID。

(2)Diagnosis(诊断结果):M为恶性,B为良性。该数据集共包含357个良性病例和212个恶性病例。

(3)细胞核的10个特征值,包括radius(半径)、texture(纹理)、perimeter(周长)、面积(area)、平滑度(smoothness)、紧凑度(compactness)、凹面(concavity)、凹点(concave points)、对称性(symmetry)和分形维数(fractal dimension)等。同时,为上述10个特征值分别提供了3种统计量,分别为均值(mean)、标准差(standard error)和最大值(worst or largest)。

二、目的及分析任务

(1)使用训练集对SVM模型进行训练。

(2)使用SVM模型对威斯康星乳腺癌数据集的诊断结果进行预测。

(3)对SVM模型进行评价。

三、方法及工具

Python语言及pandas、NumPy、matplotlib、scikit-learn包。

svm.SVC的超参数及其解读:

svm.SVC的超参数及其解读
参数名称参数类型说明
C浮点型,必须为正,默认值为1.0在sklearn.svm.SVC中使用的惩罚是L2范数的平方,C对应的是此惩罚的正则化参数,即惩罚的系数。C值越大,则表明对分类错误的惩罚越大,因此分类结果更倾向于全正确的情况;C值越小,则表明对分类错误的惩罚越小,因此分类结果将允许更多的错误。
kernel可以是以下中的任意字符:’linear','poly','rbf','sigmoid','precomputed';默认为'rbf'。核函数类型,'rbf'为径向基函数,'linear'为线性核,'poly'为多项式核函数
degree类型int,默认值为3当指定kernel为'poly'时,表示选择的多项式的最高次数,默认为三次多项式(poly)
gamma'scale'、’auto'或者'float',默认值为'scale'(在0.22版本之前,默认为'auto'gamma为'rbf'、’poly'、'sigmoid'的核系数。
decision_function_shape默认为'ovr',只有两个值可供选择'ovr'和'ovo'在处理多分类问题时,确定采用某种策略。'ovr'表示一对一的分类器,假如有k个类别,则需要构建k*(k-1)/2个分类器;'ovo'为一对多的分类器,假如有k个类别,则需要构建k个分类器。

四、数据读入

导入需要的第三方包:

import pandas as pd
import numpy as np
import matplotlib.pyplot#导入sklearn的svm
from sklearn import svm#导入metrics评估方法
from sklearn import metrics#train_test_split用于拆分训练集和测试集
from sklearn.model_selection import train_test_split#StandardScalery作用是去均值和方差归一化
from sklearn.preprocessing import StandardScaler

读入数据:

df_bc_data=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第4章 分类分析\\bc_data.csv")

对数据集进行显示:

df_bc_data

五、数据理解

对数据框df_bc_data进行探索性分析,这里采用的实现方法为调用pandas包中数据框(DataFrame)的describe()方法。

df_bc_data.describe()

 查看数据集中是否存在缺失值:

df_bc_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):#   Column                   Non-Null Count  Dtype  
---  ------                   --------------  -----  0   id                       569 non-null    int64  1   diagnosis                569 non-null    object 2   radius_mean              569 non-null    float643   texture_mean             569 non-null    float644   perimeter_mean           569 non-null    float645   area_mean                569 non-null    float646   smoothness_mean          569 non-null    float647   compactness_mean         569 non-null    float648   concavity_mean           569 non-null    float649   concave points_mean      569 non-null    float6410  symmetry_mean            569 non-null    float6411  fractal_dimension_mean   569 non-null    float6412  radius_se                569 non-null    float6413  texture_se               569 non-null    float6414  perimeter_se             569 non-null    float6415  area_se                  569 non-null    float6416  smoothness_se            569 non-null    float6417  compactness_se           569 non-null    float6418  concavity_se             569 non-null    float6419  concave points_se        569 non-null    float6420  symmetry_se              569 non-null    float6421  fractal_dimension_se     569 non-null    float6422  radius_worst             569 non-null    float6423  texture_worst            569 non-null    float6424  perimeter_worst          569 non-null    float6425  area_worst               569 non-null    float6426  smoothness_worst         569 non-null    float6427  compactness_worst        569 non-null    float6428  concavity_worst          569 non-null    float6429  concave_points_worst     569 non-null    float6430  symmetry_worst           569 non-null    float6431  fractal_dimension_worst  569 non-null    float64
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB

查看数据是否存在不均衡的问题:

df_bc_data['diagnosis'].value_counts()
B    357
M    212
Name: diagnosis, dtype: int64

六、数据准备

由于id一列并非为自变量或因变量,删除该列。

new_bc=df_bc_data.drop(['id'],axis=1)

将diagnosis属性字段的取值,'M'使用1代替,'B'使用0代替。

new_bc['diagnosis']=new_bc['diagnosis'].map({'M':1,'B':0})

将数据集拆分为训练集和测试集,这里使用20%的数据作为测试集。

bc_train,bc_test=train_test_split(new_bc,test_size=0.2)

将训练集和测试集的数据属性和标签进行拆分。

#对训练集的数据和标签进行拆分
bc_train_data=bc_train.iloc[:,1:]
bc_train_label=bc_train['diagnosis']
#对测试集的数据和标签进行拆分
bc_test_data=bc_test.iloc[:,1:]
bc_test_label=bc_test['diagnosis']

为了排除数值的量纲对结果的影响,需要对训练数据和预测数据进行标准化处理。

bc_train_data=StandardScaler().fit_transform(bc_train_data)
bc_test_data=StandardScaler().fit_transform(bc_test_data)

七、模型训练

使用训练集训练SVM模型。除了直接指定参数的数值之外,还可以使用自动调参计数(如GridSearchCV)进行参数选择。

bc_model=svm.SVC(C=0.2,kernel='linear') #创建SVM分类器
bc_model.fit(bc_train_data,bc_train_label)  #训练模型
SVC(C=0.2, kernel='linear')

八、模型应用及评价

使用已经训练好的SVM模型,在测试集上进行测试,并输出评价指标的取值。

#在测试集上应用模型,并进行评价
prediction=bc_model.predict(bc_test_data)
#评价指标
print("混淆矩阵:\n",metrics.confusion_matrix(bc_test_label,prediction))
print("准确率:",metrics.accuracy_score(bc_test_label,prediction))
print('查准率:',metrics.precision_score(bc_test_label,prediction))
print('召回率:',metrics.recall_score(bc_test_label,prediction))
print("F1值:",metrics.f1_score(bc_test_label,prediction))
混淆矩阵:[[74  0][ 1 39]]
准确率: 0.9912280701754386
查准率: 1.0
召回率: 0.975
F1值: 0.9873417721518987

这篇关于数据分析实战 | SVM算法——病例自动诊断分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392383

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边