OpenCV-Python小应用(八):判断是否有深色线条

2023-11-11 11:52

本文主要是介绍OpenCV-Python小应用(八):判断是否有深色线条,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV-Python小应用(八):判断是否有深色线条

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 判断是否有深色线条
    • 思路一:通过图像梯度直方图判断
    • 思路二:通过图像灰度值变化判断
  • 参考

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
  • OpenCV用C++语言编写,它具有C++、Python、Java和MATLAB接口,并支持Windows、Linux、Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令。
  • 图像梯度是指图像中灰度变化的速度,反映了图像的边缘信息。在图像处理中,我们可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导。
  • 在一幅模糊图像中的物体的轮廓不明显,轮廓边缘灰度变化不强烈,从而导致层次感不强,而在清晰图片中的物体轮廓边缘灰度变化明显,层次感强。因此,我们引入的图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导。
  • 在上边这幅图中可以看出,如果一副图像的相邻灰度值有变化,那么梯度就存在,如果图像相邻的像素没有变化,那么梯度就是0,把梯度值和相应的像素相加,那么灰度值没有变化的,像素就没有变化,灰度值变了,像素值也就变了。
  • 一些经典的图像梯度算法是考虑图像的每个像素的某个邻域内的灰度变化,利用边缘临近的一阶或二阶导数变化规律,对原始图像中像素某个邻域设置梯度算子,通常我们用小区域模板进行卷积来计算,有Sobel算子、Robinson算子、Laplace算子等。
  • 图像的灰度值是指图像中每个像素的亮度值,通常用于黑白图像。灰度值的范围通常是0到255,其中0表示黑色,255表示白色。在计算机视觉中,灰度图像是由纯黑和纯白来过渡得到的,在黑色中加入白色就得到灰色,纯黑和纯白按不同的比例来混合就得到不同的灰度值。
  • 在灰度图像中,每个像素的颜色值都是灰度值,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。在灰度图像中,每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。

实验环境

  • Python 3.6.13 (面向对象的高级语言)
  • OpenCV 3.4.10(python第三方库)pip3 install opencv-python==3.4.10.37

判断是否有深色线条

在这里插入图片描述

思路一:通过图像梯度直方图判断

  • 基本思路:对图像进行梯度计算,得到的梯度图像,进行每一行梯度值的统计,得到梯度直方图。如果梯度直方图有一定数量的高峰(这里阈值条件为高峰数量len(lst) > 3),则认为有深色线条,否则,认为无深色线条。
    在这里插入图片描述
  • 图像梯度相关知识点,可查阅OpenCV-Python快速入门(七):边缘检测
import  cv2
import matplotlib.pyplot as plt
import numpy as np
def get_magnitude(img):'''param: img 图像数组return:magnitude 图像梯度'''# 高斯模糊,平滑Blur = cv2.GaussianBlur(img, (3, 3), 0, sigmaY=0, borderType=cv2.BORDER_REPLICATE) # 计算图像x方向梯度sobel_dx = cv2.Sobel(Blur, cv2.CV_32F, 1, 0, ksize=3, scale=1, delta=0, borderType=cv2.BORDER_REPLICATE)# 计算图像y方向梯度sobel_dy = cv2.Sobel(Blur, cv2.CV_32F, 0, 1, ksize=3, scale=1, delta=0, borderType=cv2.BORDER_REPLICATE)# 得到图像梯度magnitude = np.sqrt(sobel_dx * sobel_dx + sobel_dy * sobel_dy) # 梯度幅值# cv2.imshow("magnitude",magnitude)# cv2.waitKey()# cv2.destroyAllWindows()return magnitudeif __name__ == "__main__":img = cv2.imread('3.png',0)magnitude = get_magnitude(img)print(magnitude)X_sum=np.sum(magnitude,axis=1)lst = list(filter(lambda x : x > 10000,X_sum))print(lst)if len(lst) > 3:print(True)else:print(False)x=np.arange(0,len(X_sum)) # x轴坐标值# print('x.shape:'x.shape)plt.figure()plt.subplot(1, 2, 1)plt.imshow(magnitude,cmap='gray')plt.subplot(1, 2, 2)plt.plot(x,X_sum,c ='r') # 参数c为color简写,表示颜色,r为red即红色# plt.show() # 显示图像plt.show()
True

在这里插入图片描述

思路二:通过图像灰度值变化判断

  • 基本思路:对图像的每一行求均值,对每一行均值以bin=5为一组,得到bin_mean,对每个相邻的bin_mean做差,如果差值大于一定阈值(这里阈值条件为max_dif > 3),则认为有深色线条,否则,认为无深色线条。

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('3.png',0)
X_mean = np.mean(img, axis=1)
print(X_mean.shape)
bin = 5
start = 0
lenght = len(X_mean)
bin_means = []
while start < lenght:end = start + binif end > lenght:bin_mean = np.mean(X_mean[start:lenght])else:bin_mean = np.mean(X_mean[start:end])start += binbin_means.append(bin_mean)dif = abs(np.diff(np.array(bin_means))) # 相邻
max_dif = np.max(dif)
print(max_dif)
if max_dif > 3:print(True)
else:print(False)
True

参考

[1] https://opencv.org/
[2] 李立宗. OpenCV轻松入门:面向Python. 北京: 电子工业出版社,2019

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于OpenCV-Python小应用(八):判断是否有深色线条的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389872

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e