非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc

本文主要是介绍非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#本数据纯属虚构,如有雷同实属巧合

本次拜读的是:

 

目录

创建

读取

 使用loc索引读取dataframe:

使用iloc读取数据表格dataframe


""" dataframe是python数据分析基础中的核心, 这位按字面意义可理解为数据表格、数据框架, 她跟excel的table很相似, 由三部分组成: 行索引,称为index; 列索引,称为column; 数据内容。 她的每一列都是一个series对象。 """

创建

使用字典创建dataframe,并设置索引号

import pandas as pd #导入pandas库,缩写为pd
print("\n使用字典创建dataframe,并设置索引号:")
characters01 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9])
print(characters01)

 

索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型
print("\n\n索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型:")
characters02 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
})
print(characters02)

 

可以使用columns参数定义列名
print("\n\n可以使用columns参数定义列名:")
characters03 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9], columns=["score", "name", "age", "newcol"])
print(characters03)

 

如果某一字段没有数据会自动变成NaN
print("\n\n如果某一字段没有数据会自动变成NaN:")
gdp = pd.DataFrame({'2018': {'GDP': "1%", '人口': 3},'2019': {'GDP': "3%", '人口': 2},'2020': {'GDP': "2%", '人口': 1},'2021': {'人口': 1},'2022': {'GDP': "4%"}
})
print(gdp)

 

实现多层嵌套索引
print("\n\n实现多层嵌套索引:")
values = [[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
]
salesData = pd.DataFrame(values, columns=["销量", "型号"], index=[["一月", "一月", "二月", "二月", "三月", "三月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print(salesData)

 

通过元组直接实现MultiIndex多层嵌套索引
print("\n\n通过元组直接实现MultiIndex多层嵌套索引:")
index = pd.MultiIndex.from_tuples([('f', 1), ('f', 2), ('w', 2)], names=['e', 'c'])
df01 = pd.DataFrame({"a01": [400, 500, 600],"b02": [702, 805, 903],"c03": [101, 110, 120]
}, index=index)
print(df01)

 读取

使用索引读取dataframe

 

print("\n\n使用索引读取dataframe:")
characters04 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
print("\n\n读取name列:\n", characters04['name'])
print("\n\n读取name和age列:\n", characters04[['name', 'age']])
print("\n\n读取前两行的所有内容:\n", characters04[:2])
print("\n\n使用loc索引读取dataframe:")
print("\n\n使用loc索引第一行所有内容\n", characters04.loc[1])
print("\n\n使用loc索引同行多列内容\n", characters04.loc[1, ['name',  "age"]])
print("\n\n使用loc索引多行同列内容\n", characters04.loc[[1, 3], "name"])
print("\n\n使用loc索引多行多列内容\n", characters04.loc[1:2])
print("\n\n使用lambda表达式,获取索引号是偶数的行\n", characters04.loc[lambda x: x.index % 2 == 0])
print("\n\n获取年龄大于18的对应值\n", characters04.loc[lambda x: x['age'] > 18 ])
print("\n\n逗号前写筛选条件,逗号后显示对应值\n", characters04.loc[characters04['age'] > 17, 'name'])
print("\n\n逗号前写筛选条件,逗号后获取对应值的相关字段信息:\n", characters04.loc[characters04['age'] > 17, ['name', 'score']])

 

 

 使用loc索引读取dataframe:

 

 

 

 

使用loc读取多层索引dataframe
print("\n\n使用loc读取多成索引dataframe:")
salesData = pd.DataFrame([[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
], columns=["销量", "型号"], index=[["六月", "六月", "七月", "七月", "八月", "八月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print("\n\n输出整个表:\n",salesData)
print("\n\n输出六月相关:\n",salesData.loc['六月'])
print("\n\n输出六月huawei相关:\n",salesData.loc['六月', 'huawei'])

 

 

 

使用iloc读取数据表格dataframe

print("\n\n使用iloc读取数据表格dataframe:")
df001 = pd.DataFrame( [[39,35940,8,703], [51,45468,4,815], [84, 83694, 4, 894], [57, 46540, 2, 973], [19, 20316, 3, 436], [46, 53104, 6, 735]] ,index=list(range(0, 12, 2)), #定义显示行索引起始为0,结束为12,步长为2columns=list(range(0, 8, 2)))#定义显示列索引起始为0,结束为8,步长为2
print("\n\n输出整个表:\n",df001)
print("\n\n输出第二行,默认索引为1,显示索引为2:\n",df001.iloc[1])
print("\n\n使用切片运算输出前三行:\n",df001.iloc[:3])
print("\n\n使用切片超出范围也不会报错:\n",df001.iloc[3:100])
# print("\n\n但如果读取某个不存在的索引会报错:\n",df001.iloc[4, 8, 9])
print("\n\n选择第二行第二列的一个数据:\n",df001.iloc[1, 1])
print("\n\n连续选择第二到五行的第三到第四列的数据:\n",df001.iloc[1:5, 2:4])
print("\n\n跳选第二、四、六行的第二、四列的数据:\n",df001.iloc[[1, 3, 5], [1, 3]])
print("\n\n使用冒号表示获取一整行:\n",df001.iloc[1:3, :])
print("\n\n使用冒号表示获取一整列:\n",df001.iloc[:, 1:3])

 

 

 

 

 

使用iterrows遍历读取每一行
print("\n\n使用iterrows遍历读取每一行:")
characters05 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for index, row in characters05.iterrows():print("索引index: {0}".format(index))print("角色{0}, 年龄{1}, 分数{2}".format(row['name'], row['age'], row['score']))

 

使用items遍历读取每一列
print("\n\n使用items遍历读取每一列:")
characters06 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for label, item in characters06.items():print(label)print(item)

 

 

这篇关于非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389234

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll