非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc

本文主要是介绍非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#本数据纯属虚构,如有雷同实属巧合

本次拜读的是:

 

目录

创建

读取

 使用loc索引读取dataframe:

使用iloc读取数据表格dataframe


""" dataframe是python数据分析基础中的核心, 这位按字面意义可理解为数据表格、数据框架, 她跟excel的table很相似, 由三部分组成: 行索引,称为index; 列索引,称为column; 数据内容。 她的每一列都是一个series对象。 """

创建

使用字典创建dataframe,并设置索引号

import pandas as pd #导入pandas库,缩写为pd
print("\n使用字典创建dataframe,并设置索引号:")
characters01 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9])
print(characters01)

 

索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型
print("\n\n索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型:")
characters02 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
})
print(characters02)

 

可以使用columns参数定义列名
print("\n\n可以使用columns参数定义列名:")
characters03 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9], columns=["score", "name", "age", "newcol"])
print(characters03)

 

如果某一字段没有数据会自动变成NaN
print("\n\n如果某一字段没有数据会自动变成NaN:")
gdp = pd.DataFrame({'2018': {'GDP': "1%", '人口': 3},'2019': {'GDP': "3%", '人口': 2},'2020': {'GDP': "2%", '人口': 1},'2021': {'人口': 1},'2022': {'GDP': "4%"}
})
print(gdp)

 

实现多层嵌套索引
print("\n\n实现多层嵌套索引:")
values = [[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
]
salesData = pd.DataFrame(values, columns=["销量", "型号"], index=[["一月", "一月", "二月", "二月", "三月", "三月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print(salesData)

 

通过元组直接实现MultiIndex多层嵌套索引
print("\n\n通过元组直接实现MultiIndex多层嵌套索引:")
index = pd.MultiIndex.from_tuples([('f', 1), ('f', 2), ('w', 2)], names=['e', 'c'])
df01 = pd.DataFrame({"a01": [400, 500, 600],"b02": [702, 805, 903],"c03": [101, 110, 120]
}, index=index)
print(df01)

 读取

使用索引读取dataframe

 

print("\n\n使用索引读取dataframe:")
characters04 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
print("\n\n读取name列:\n", characters04['name'])
print("\n\n读取name和age列:\n", characters04[['name', 'age']])
print("\n\n读取前两行的所有内容:\n", characters04[:2])
print("\n\n使用loc索引读取dataframe:")
print("\n\n使用loc索引第一行所有内容\n", characters04.loc[1])
print("\n\n使用loc索引同行多列内容\n", characters04.loc[1, ['name',  "age"]])
print("\n\n使用loc索引多行同列内容\n", characters04.loc[[1, 3], "name"])
print("\n\n使用loc索引多行多列内容\n", characters04.loc[1:2])
print("\n\n使用lambda表达式,获取索引号是偶数的行\n", characters04.loc[lambda x: x.index % 2 == 0])
print("\n\n获取年龄大于18的对应值\n", characters04.loc[lambda x: x['age'] > 18 ])
print("\n\n逗号前写筛选条件,逗号后显示对应值\n", characters04.loc[characters04['age'] > 17, 'name'])
print("\n\n逗号前写筛选条件,逗号后获取对应值的相关字段信息:\n", characters04.loc[characters04['age'] > 17, ['name', 'score']])

 

 

 使用loc索引读取dataframe:

 

 

 

 

使用loc读取多层索引dataframe
print("\n\n使用loc读取多成索引dataframe:")
salesData = pd.DataFrame([[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
], columns=["销量", "型号"], index=[["六月", "六月", "七月", "七月", "八月", "八月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print("\n\n输出整个表:\n",salesData)
print("\n\n输出六月相关:\n",salesData.loc['六月'])
print("\n\n输出六月huawei相关:\n",salesData.loc['六月', 'huawei'])

 

 

 

使用iloc读取数据表格dataframe

print("\n\n使用iloc读取数据表格dataframe:")
df001 = pd.DataFrame( [[39,35940,8,703], [51,45468,4,815], [84, 83694, 4, 894], [57, 46540, 2, 973], [19, 20316, 3, 436], [46, 53104, 6, 735]] ,index=list(range(0, 12, 2)), #定义显示行索引起始为0,结束为12,步长为2columns=list(range(0, 8, 2)))#定义显示列索引起始为0,结束为8,步长为2
print("\n\n输出整个表:\n",df001)
print("\n\n输出第二行,默认索引为1,显示索引为2:\n",df001.iloc[1])
print("\n\n使用切片运算输出前三行:\n",df001.iloc[:3])
print("\n\n使用切片超出范围也不会报错:\n",df001.iloc[3:100])
# print("\n\n但如果读取某个不存在的索引会报错:\n",df001.iloc[4, 8, 9])
print("\n\n选择第二行第二列的一个数据:\n",df001.iloc[1, 1])
print("\n\n连续选择第二到五行的第三到第四列的数据:\n",df001.iloc[1:5, 2:4])
print("\n\n跳选第二、四、六行的第二、四列的数据:\n",df001.iloc[[1, 3, 5], [1, 3]])
print("\n\n使用冒号表示获取一整行:\n",df001.iloc[1:3, :])
print("\n\n使用冒号表示获取一整列:\n",df001.iloc[:, 1:3])

 

 

 

 

 

使用iterrows遍历读取每一行
print("\n\n使用iterrows遍历读取每一行:")
characters05 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for index, row in characters05.iterrows():print("索引index: {0}".format(index))print("角色{0}, 年龄{1}, 分数{2}".format(row['name'], row['age'], row['score']))

 

使用items遍历读取每一列
print("\n\n使用items遍历读取每一列:")
characters06 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for label, item in characters06.items():print(label)print(item)

 

 

这篇关于非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389234

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函