数据白化预处理

2023-11-11 08:18
文章标签 数据 预处理 白化

本文主要是介绍数据白化预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注公众号,更多知识分享,多谢


数据白化预处理

    随机向量的“零均值化”和“空间解相关”是最常用的两个预处理过程,其中“零均值化”比较简单,而“空间解相关”涉及一些矩阵的知识。

    设有均值为零的随机信号向量 x ,其自相关矩阵

R_x=E[xx^T]\neq I

很明显, R_x 是对称矩阵,且是非负定的(所有特征值都大于或等于0)。

    现在,寻找一个线性变换 Bx 进行变换,即 y=Bx ,使得

R_y=BE[xx^T]B^T=I

上式的含义是:y的各分量是不相关的,即 E[y_i y_j]=\delta_{ij} 。通常将这个过程称为“空间解相关”、“空间白化”或“球化”。 B 称为空间解相关矩阵(空间白化矩阵、球化矩阵)。

    由 R_x 的性质可知,其存在特征值分解:

R_x = Q\Sigma Q^T

Q 是正交矩阵, \Sigma 是对角矩阵,其对角元素是 R_x 特征值。

    令

\begin{equation}\label{eq:B}B=\Sigma^{-1/2} Q^T\end{equation}

则有

R_y = (\Sigma^{-1/2} Q^T)Q \Sigma Q^T (\Sigma^{-1/2} Q^T)^T = I

因此,通过矩阵 B 线性变换后, y 的各个分量变得不相关了。

    对于 R_x 来说,特征值分解和奇异值分解是等价的,而奇异值分解的数值算法比特征值分解的数值算法具有更好的稳定性,因此一般都用奇异值分解来构造空间解相关矩阵 B

    应该注意到,“空间解相关”不能保证各分量信号之间的“独立性”,但它能够简化盲分离算法或改善分离算法的性能。

注:以上来自戴老师《盲信号处理》的课件。

    最为熟知的例子是白噪声。元素 x_i 可以是一个时间序列在相继时间点 i=1,2,... 的值,且在噪声序列中没有时间上得相关性。术语“白”来自于白噪声的能谱在所有频率上是一个常数这一事实,就像含有各种颜色的白光谱一样。白化的本质就是去相关加缩放。

    式\eqref{eq:B}的解相关矩阵 B 肯定不是唯一的白化矩阵。容易看到,任何矩阵 UBU 为正交矩阵)也是白化矩阵。这是因为对 y=UBx ,下式成立:

E[yy^T] = UBE[xx^T]B^TU^T = UIU^T = I

    一个重要的例子是矩阵 Q \Sigma^{-1/2} Q^T 。这也是一个白化矩阵,因为它是用正交矩阵 Q 左乘式\eqref{eq:B}的 B 得到的。这个矩阵称为 C_x 的逆均方根,并用 C_x^{-1/2} 表示,因为它来自于均方根概念向矩阵的标准推广。

注:以上来自《Independent Component Analysis》

    关于白化代码的实现,其实很简单,下面给一个

function [z_w varargout] = myWhiten(z)

%--------------------------------------------------------------------------

% 语法:z_w = myWhiten(z);

%     [z_w T] = myWhiten(z);

% 输入:z是一个mxn的矩阵,包含m维随机变量的各n个采样点。

% 输出:z_w是白化版本的z。T是mxm的白化变换矩阵。

%--------------------------------------------------------------------------

 

%% 计算样本协方差

R = cov(z'); % 1表示除以N来计算协方差

 

%% 白化z

[U D ~] = svd(R, 'econ'); % 用eig也行,[U, D] = eig(R);

 

%% 下面求白化矩阵

T = U * inv (sqrt(D)) * U'; % 称为协方差矩阵的逆均方根,inv计算不会太耗时间,因为D为对角阵。inv(sqrt(D))*U'也是一个可行白化矩阵

 

%% 乘以白化矩阵实现白化

z_w = T * z;

 

if (nargout == 2)

    varargout{1} = T;

end

    另外可以直接利用FastICA的白化函数whitenv,它要配合其提供的PCA函数pcamat.m完成白化,其提供的例子中有提示如下

% EXAMPLE

%       [E, D] = pcamat(vectors);

%       [nv, wm, dwm] = whitenv(vectors, E, D);

    之前写过关于FastICA工具箱的使用,再把使用白化的例子给出来吧:

 

 

% 测试whitenv函数

clc

clear

close all

 

% 加载matlab自带的数据

load cities

stdr = std(ratings);

sr = ratings./repmat(stdr,329,1);

sr = sr';

 

figure

boxplot(sr','orientation','horizontal','labels',categories)

 

% 测试

firstEig = 1;

lastEig = 9;

s_interactive = 'off';

 

sr = remmean(sr); % 下面的pcamat和whitenv都没有去均值,这里先做取均值处理

[E, D] = pcamat(sr, firstEig, lastEig, s_interactive);

[nv, wm, dwm] = whitenv(sr, E, D);

 

figure

boxplot(nv','orientation','horizontal','labels',categories)

 

 

 

结果如下

 

PCA:    PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化。    PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小。另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待。    在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值。但是比较奇怪的是,在对自然图像进行均值处理时并不是不是减去该维的平均值,而是减去这张图片本身的平均值。因为PCA的预处理是按照不同应用场合来定的。    自然图像指的是人眼经常看见的图像,其符合某些统计特征。一般实际过程中,只要是拿正常相机拍的,没有加入很多人工创作进去的图片都可以叫做是自然图片,因为很多算法对这些图片的输入类型还是比较鲁棒的。在对自然图像进行学习时,其实不需要太关注对图像做方差归一化,因为自然图像每一部分的统计特征都相似,只需做均值为0化就ok了。不过对其它的图片进行训练时,比如首先字识别等,就需要进行方差归一化了。    PCA的计算过程主要是要求2个东西,一个是降维后的各个向量的方向,另一个是原先的样本在新的方向上投影后的值。    首先需求出训练样本的协方差矩阵,如公式所示(输入数据已经均值化过):        求出训练样本的协方差矩阵后,将其进行SVD分解,得出的U向量中的每一列就是这些数据样本的新的方向向量了,排在前面的向量代表的是主方向,依次类推。用U’*X得到的就是降维后的样本值z了,即:        (其实这个z值的几何意义是原先点到该方向上的距离值,但是这个距离有正负之分),这样PCA的2个主要计算任务已经完成了。用U*z就可以将原先的数据样本x给还原出来。   在使用有监督学习时,如果要采用PCA降维,那么只需将训练样本的x值抽取出来,计算出主成分矩阵U以及降维后的值z,然后让z和原先样本的y值组合构成新的训练样本来训练分类器。在测试过程中,同样可以用原先的U来对新的测试样本降维,然后输入到训练好的分类器中即可。

 

有一个观点需要注意,那就是PCA并不能阻止过拟合现象。表明上看PCA是降维了,因为在同样多的训练样本数据下,其特征数变少了,应该是更不容易产生过拟合现象。但是在实际操作过程中,这个方法阻止过拟合现象效果很小,主要还是通过规则项来进行阻止过拟合的。   并不是所有ML算法场合都需要使用PCA来降维,因为只有当原始的训练样本不能满足我们所需要的情况下才使用,比如说模型的训练速度,内存大小,希望可视化等。如果不需要考虑那些情况,则也不一定需要使用PCA算法了。    Whitening:    Whitening的目的是去掉数据之间的相关联度,是很多算法进行预处理的步骤。比如说当训练图片数据时,由于图片中相邻像素值有一定的关联,所以很多信息是冗余的。这时候去相关的操作就可以采用白化操作。数据的whitening必须满足两个条件:一是不同特征间相关性最小,接近0;二是所有特征的方差相等(不一定为1)。常见的白化操作有PCA whitening和ZCA whitening。    PCA whitening是指将数据x经过PCA降维为z后,可以看出z中每一维是独立的,满足whitening白化的第一个条件,这是只需要将z中的每一维都除以标准差就得到了每一维的方差为1,也就是说方差相等。公式为:        ZCA whitening是指数据x先经过PCA变换为z,但是并不降维,因为这里是把所有的成分都选进去了。这是也同样满足whtienning的第一个条件,特征间相互独立。然后同样进行方差为1的操作,最后将得到的矩阵左乘一个特征向量矩阵U即可。   ZCA whitening公式为

 

这篇关于数据白化预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388731

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数