「算法小记」-2:矩阵链相乘的方案数【迭代/递归/动态规划/区域化DP/记忆化搜索】(C++ )

本文主要是介绍「算法小记」-2:矩阵链相乘的方案数【迭代/递归/动态规划/区域化DP/记忆化搜索】(C++ ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号:程序员洲洲。
🎈 本文专栏:本文收录于洲洲的《算法小记》系列专栏,该专栏记录了许多常见的各种各样有趣的实战技巧。欢迎大家关注本专栏~专栏一键跳转
🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。
🌼 同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群~社群中将不定时分享各类福利
🖥 随时欢迎您跟我沟通,一起交流,一起成长、进步!点此即可获得联系方式~

本文目录

  • 一、题目描述
  • 解法一:记忆化搜索(区间DP)
  • 解法二:
  • 总结

一、题目描述

题目描述:
设 A1, A2, …, An 为连续相乘的矩阵序列,矩阵相乘满足乘法结合律,那么一共有多少种相乘的方案?

比如 A1, A2, A3, A4 ,通过加括号来体现乘顺序,有 5 种方案:

((A1A2)A3)A4
(A1A2)(A3A4)
A1(A2(A3A4))
(A1(A2A3))A4
A1((A2A3)A4)

输入:
每组数据给出 1 ≤ n ≤ 30。
输出:
n 个矩阵的矩阵链相乘方案数。
输入5,则输出14。
输入10,则输出4862。

解法一:记忆化搜索(区间DP)

#include <iostream>
using namespace std;long long dp[35][35], n;
long long  dfs(int l, int r) {if (l >= r) return 1;if (dp[l][r]) return dp[l][r];for (int mid = l; mid < r; mid++) {dp[l][r] += dfs(l, mid) * dfs(mid + 1, r);}return dp[l][r];
}
int main() {while (cin >> n) {dfs(1, n);cout << dp[1][n] << endl;}return 0;
}

如果说简单的理解这个算法,我们可以打一段输出来检测每一次处理的dp数组的具体数值。
在这里插入图片描述
也就是说,当n=4时,可以把问题看成:

14 = 11 * 24 + 12 * 34 + 13 * 44。注意这是一个非常重要的点,有助于我们理解。用dp[i][j]表示区间[i,j]的乘法方案数量,真正的核心点是考虑乘法发生在哪个划分点(切点)。然后不断的去更新这个数量并进行相加。

具体过程可以看成如下:

1. 初始化dp数组:- 创建一个二维数组dp[35][35],并将所有元素初始化为02. 调用dfs(1, 5)- 进入dfs函数,参数l=1,r=53. 判断基本情况:- l=1 小于 r=5,继续执行。4. 判断是否已计算过:- dp[1][5]的值为0(初始值),继续执行。5. 循环遍历分割点:- 初始化mid=l=1- 进入循环:- mid=1,计算dp[1][5] += dfs(1, 1) * dfs(2, 5)- 计算dfs(1, 1)- 进入dfs函数,参数l=1,r=1- 判断基本情况:l=1 等于 r=1,返回1- 返回结果1- 计算dfs(2, 5)- 进入dfs函数,参数l=2,r=5- 判断基本情况:l=2 小于 r=5,继续执行。- 判断是否已计算过:dp[2][5]的值为0(初始值),继续执行。- 循环遍历分割点:- 初始化mid=2- 进入循环:- mid=2,计算dp[2][5] += dfs(2, 2) * dfs(3, 5)- 计算dfs(2, 2)- 进入dfs函数,参数l=2,r=2- 判断基本情况:l=2 等于 r=2,返回1- 返回结果1- 计算dfs(3, 5)- 进入dfs函数,参数l=3,r=5- 判断基本情况:l=3 小于 r=5,继续执行。- 判断是否已计算过:dp[3][5]的值为0(初始值),继续执行。- 循环遍历分割点:- 初始化mid=3- 进入循环:- mid=3,计算dp[3][5] += dfs(3, 3) * dfs(4, 5)- 计算dfs(3, 3)- 进入dfs函数,参数l=3,r=3- 判断基本情况:l=3 等于 r=3,返回1- 返回结果1- 计算dfs(4, 5)- 进入dfs函数,参数l=4,r=5- 判断基本情况:l=4 小于 r=5,继续执行。- 判断是否已计算过:dp[4][5]的值为0(初始值),继续执行。- 循环遍历分割点:- 初始化mid=4- 进入循环:- mid=4,计算dp[4][5] += dfs(4, 4) * dfs(5, 5)- 计算dfs(4, 4)- 进入dfs函数,参数l=4,r=4- 判断基本情况:l=4 等于 r=4,返回1- 返回结果1- 计算dfs(5, 5)- 进入dfs函数,

解法二:

#include <iostream>
using namespace std;
long long cishu(int n) {long long dp[100][100] = {0};for (int i = 1; i <= n; i++) {dp[i][i] = 1;}for (int len = 2; len <= n; len++) {for (int i = 1; i <= n - len + 1; i++) {int j = i + len - 1;dp[i][j] = 0;for (int k = i; k < j; k++) {//用dp[i][j] 表示区间[i,j]的乘法方案数,考虑最后一次乘法发生在哪里来划分子问题 dp[i][j] = dp[i][j] + (dp[i][k] * dp[k + 1][j]);}}}return dp[1][n];
}
int main() {int n;while(cin >> n){long long num = cishu(n);cout << num << endl;}
}

在这里插入图片描述

迭代的思想有点难以理解,如果想弄明白的话,建议各位读者手推一遍算法过程。

总结

Hello,各位看官老爷们好,洲洲已经建立了CSDN技术交流群,如果你很感兴趣,可以私信我加入我的社群。

📝社群中不定时会有很多活动,例如每周都会包邮免费送一些技术书籍及精美礼品、学习资料分享、大厂面经分享、技术讨论、行业大佬创业杂谈等等。

📝社群方向很多,相关领域有Web全栈(前后端)、人工智能、机器学习、自媒体变现、前沿科技文章分享、论文精读等等。

📝不管你是多新手的小白,都欢迎你加入社群中讨论、聊天、分享,加速助力你成为下一个技术大佬!也随时欢迎您跟我沟通,一起交流,一起成长。变现、进步、技术、资料、项目、你想要的这里都会有

📝网络的风口只会越来越大,风浪越大,鱼越贵!欢迎您加入社群~一个人可以或许可以走的很快,但一群人将走的更远!

📝关注我的公众号(与CSDN同ID:程序员洲洲)可以获得一份Java 10万字面试宝典及相关资料!~

📝想都是问题,做都是答案!行动起来吧!欢迎评论区or后台与我沟通交流,也欢迎您点击下方的链接直接加入到我的交流社群!~ 跳转链接社区~

在这里插入图片描述

这篇关于「算法小记」-2:矩阵链相乘的方案数【迭代/递归/动态规划/区域化DP/记忆化搜索】(C++ )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388458

相关文章

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的