【优化求解】人工蜂群ABC算法matlab代码

2023-11-11 01:20

本文主要是介绍【优化求解】人工蜂群ABC算法matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法 神经网络预测 雷达通信  无线传感器 电力系统

信号处理 图像处理 路径规划 元胞自动机 无人机 

⛄ 内容介绍

​一、人工蜂群算法的介绍

    人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。

二、人工蜂群算法的原理

   1、原理

        标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。

        假设问题的解空间是D维的,采蜜蜂与观察蜂的个数都是SN,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。则标准的ABC算法将优化问题的求解过程看成是在D维搜索空间中进行搜索。每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。一个采蜜蜂与一个蜜源是相对应的。与第i个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:

 其中,,是区间上的随机数,。标准的ABC算法将新生成的可能解与原来的解作比较,并采用贪婪选择策略保留较好的解。每一个观察蜂依据概率选择一个蜜源,概率公式为

其中,是可能解的适应值。对于被选择的蜜源,观察蜂根据上面概率公式搜寻新的可能解。当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。

其中,是区间上的随机数,是第维的下界和上界。

  2、流程

  • 初始化;

  • 重复以下过程:

    • 将采蜜蜂与蜜源一一对应,根据上面第一个公式更新蜜源信息,同时确定蜜源的花蜜量;
    • 观察蜂根据采蜜蜂所提供的信息采用一定的选择策略选择蜜源,根据第一个公式更新蜜源信息,同时确定蜜源的花蜜量;
    • 确定侦查蜂,并根据第三个公式寻找新的蜜源;
    • 记忆迄今为止最好的蜜源;
  • 判断终止条件是否成立;

三、人工蜂群算法用于求解函数优化问题

    对于函数

其中

%% Copyright (c) 2015, Yarpiz (www.yarpiz.com)% All rights reserved. Please read the "license.txt" for license terms.%% Project Code: YPEA114% Project Title: Implementation of Artificial Bee Colony in MATLAB% Publisher: Yarpiz (www.yarpiz.com)% % Developer: S. Mostapha Kalami Heris (Member of Yarpiz Team)% % Contact Info: sm.kalami@gmail.com, info@yarpiz.com%​clc;clear;close all;​%% Problem Definition​CostFunction=@(x) Sphere(x); % Cost Function​nVar=5; % Number of Decision Variables​VarSize=[1 nVar]; % Decision Variables Matrix Size​VarMin=-10; % Decision Variables Lower BoundVarMax= 10; % Decision Variables Upper Bound​%% ABC Settings​MaxIt=200; % Maximum Number of Iterations​nPop=100; % Population Size (Colony Size)​nOnlooker=nPop; % Number of Onlooker Bees​L=round(0.6*nVar*nPop); % Abandonment Limit Parameter (Trial Limit)​a=1; % Acceleration Coefficient Upper Bound​%% Initialization​% Empty Bee Structureempty_bee.Position=[];empty_bee.Cost=[];​% Initialize Population Arraypop=repmat(empty_bee,nPop,1);​% Initialize Best Solution Ever FoundBestSol.Cost=inf;​% Create Initial Populationfor i=1:nPop pop(i).Position=unifrnd(VarMin,VarMax,VarSize); pop(i).Cost=CostFunction(pop(i).Position); if pop(i).Cost<=BestSol.Cost BestSol=pop(i); endend​% Abandonment CounterC=zeros(nPop,1);​% Array to Hold Best Cost ValuesBestCost=zeros(MaxIt,1);​%% ABC Main Loop​for it=1:MaxIt % Recruited Bees for i=1:nPop % Choose k randomly, not equal to i K=[1:i-1 i+1:nPop]; k=K(randi([1 numel(K)])); % Define Acceleration Coeff. phi=a*unifrnd(-1,+1,VarSize); % New Bee Position newbee.Position=pop(i).Position+phi.*(pop(i).Position-pop(k).Position); % Evaluation newbee.Cost=CostFunction(newbee.Position); % Comparision if newbee.Cost<=pop(i).Cost pop(i)=newbee; else C(i)=C(i)+1; end end % Calculate Fitness Values and Selection Probabilities F=zeros(nPop,1); MeanCost = mean([pop.Cost]); for i=1:nPop F(i) = exp(-pop(i).Cost/MeanCost); % Convert Cost to Fitness end P=F/sum(F); % Onlooker Bees for m=1:nOnlooker % Select Source Site i=RouletteWheelSelection(P); % Choose k randomly, not equal to i K=[1:i-1 i+1:nPop]; k=K(randi([1 numel(K)])); % Define Acceleration Coeff. phi=a*unifrnd(-1,+1,VarSize); % New Bee Position newbee.Position=pop(i).Position+phi.*(pop(i).Position-pop(k).Position); % Evaluation newbee.Cost=CostFunction(newbee.Position); % Comparision if newbee.Cost<=pop(i).Cost pop(i)=newbee; else C(i)=C(i)+1; end end % Scout Bees for i=1:nPop if C(i)>=L pop(i).Position=unifrnd(VarMin,VarMax,VarSize); pop(i).Cost=CostFunction(pop(i).Position); C(i)=0; end end % Update Best Solution Ever Found for i=1:nPop if pop(i).Cost<=BestSol.Cost BestSol=pop(i); end end % Store Best Cost Ever Found BestCost(it)=BestSol.Cost; % Display Iteration Information disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]); end %% Results​figure;%plot(BestCost,'LineWidth',2);semilogy(BestCost,'LineWidth',2);xlabel('Iteration');ylabel('Best Cost');grid on;​

function [SX0]=observe(Q,Lmin,Lmax)%生成的S1为 population行*C列%但是要保证生成的阈值第一个比后一个小,且不能为图像的最大、小灰度值global population C;P=zeros(8*C,1);w=[1,2,4,8,16,32,64,128];SX0=zeros(population,C);num=3;flag=1;i=1;ill=0; while i<=population R=rand(8*C,1); P(:,1)=R(:,1)>=(Q(:,1,i).^2); k=1; while k<=C t=(k-1)*8+1; SX0(i,k)=w(1,:)*double(P(t:t+7,1)); temp=1; while (SX0(i,k)<=Lmin || SX0(i,k)>=Lmax || ((k>1) && SX0(i,k)<=SX0(i,k-1))) && (temp<=num) Rt=rand(8,1); P(t:t+7,1)=Rt(:,1)>=(Q(t:t+7,1,i).^2); SX0(i,k)=w(1,:)*double(P(t:t+7,1)); temp=temp+1; end if (temp>num) && (SX0(i,k)<=Lmin || SX0(i,k)>=Lmax || ((k>1) && SX0(i,k)<=SX0(i,k-1))) flag=0; %表示此组数据不合理 ill=ill+1; R=rand(8*C,1); P(:,1)=R(:,1)>=(Q(:,1,i).^2); %有时会出现停滞状态,由于此处的Q的artha==1 k=1; else flag=1; ill=0; k=k+1; end if ill>=3 Q(:,:,i)=ones(8*C,2,1)/sqrt(2); end end %% while k<=C i=i+1; end​% % fid = fopen('data.txt', 'wt');% % for j=1:C% % for i=1:population% % % % fprintf(fid, ' %4.0f ',SX0(i,j));% % if i==population% % fprintf(fid, '\n');% % end% % end% % % % fwrite(fid,SX0(:,j),'integer*population');% % % % fwrite(fid,'\n','char');% % % % end% % fclose(fid);​

​function i=RouletteWheelSelection(P)​ r=rand; C=cumsum(P); i=find(r<=C,1,'first');​end

​function z=Sphere(x)​ z=sum(x.^2);​end

这篇关于【优化求解】人工蜂群ABC算法matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/386605

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill