ROS消息过滤器之 message_filters::Synchronizer 使用详解

2023-11-10 11:12

本文主要是介绍ROS消息过滤器之 message_filters::Synchronizer 使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在ROS中,当我们有多个传感器发布的数据需要同步时,message_filters::Synchronizer 是一个非常有用的工具。它可以确保多个消息在时间上是同步的,以便更有效地处理数据。

1.什么是ROS消息过滤器?

ROS消息过滤器是一种用于处理ROS消息的工具,允许我们对消息进行过滤、同步和组合。这对于在机器人感知中整合不同传感器数据或在控制中同步多个输入源非常重要。

2.message_filters::Synchronizer 简介

        message_filters::Synchronizer 是ROS中消息过滤器的一部分,专门用于同步多个消息。它可以确保多个发布者发布的消息在时间上是同步的,以便在回调函数中处理这些消息。

3.使用场景

        当你有多个传感器发布的数据,需要确保这些数据在同一时刻可用时,message_filters::Synchronizer 就派上用场了。例如,在处理相机图像和激光雷达扫描数据时,你可能希望它们在相同的时间戳上可用,以便更准确地进行感知。

4.示例代码

工程结构:

4.1 发布者节点 (image_publisher.cpp)

#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/highgui/highgui.hpp>#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/PointCloud2.h>
#include <cv_bridge/cv_bridge.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>int main(int argc, char** argv)
{ros::init(argc, argv, "image_and_pointcloud_publisher");ros::NodeHandle nh;// 创建一个发布者,发布图像消息到 "/image_topic" 话题,缓存队列大小为 10ros::Publisher image_pub = nh.advertise<sensor_msgs::Image>("/image_topic", 10);// 创建一个发布者,发布点云消息到 "/pointcloud_topic" 话题,缓存队列大小为 10ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("/pointcloud_topic", 10);// 创建图像消息sensor_msgs::Image image_msg;// 设置图像消息的头部信息image_msg.header.stamp = ros::Time::now();image_msg.header.frame_id = "camera_frame";// 填充图像数据(这里假设你已经有一个图像数据,例如使用OpenCV加载的图像)cv::Mat image = cv::imread("/home/guo/Pictures/1.png", cv::IMREAD_COLOR);// 使用cv_bridge将OpenCV图像转换为ROS图像消息cv_bridge::CvImage cv_image;cv_image.image = image;cv_image.encoding = "bgr8"; // 8-bit, 3 channelimage_msg = *cv_image.toImageMsg();// 创建点云消息sensor_msgs::PointCloud2 pcl_msg;// 填充点云数据(这里假设你已经有一个点云数据,例如使用PCL库生成的点云)pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);// Populate your point cloud data here...pcl::io::loadPCDFile("/home/guo/Downloads/pcd/1.pcd", *cloud);// 使用PCL库将点云转换为ROS点云消息pcl::toROSMsg(*cloud, pcl_msg);pcl_msg.header.stamp = ros::Time::now();pcl_msg.header.frame_id = "camera_frame";ros::Rate loop_rate(1); // 发布频率为1Hzwhile (ros::ok()){// 更新时间戳image_msg.header.stamp = ros::Time::now();pcl_msg.header.stamp = ros::Time::now();// 发布图像消息image_pub.publish(image_msg);// 发布点云消息pcl_pub.publish(pcl_msg);// 循环等待ros::spinOnce();loop_rate.sleep();}return 0;
}

4.2 订阅者节点 (synchronized_subscriber.cpp)

#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/PointCloud2.h>
#include <message_filters/subscriber.h>
#include <message_filters/synchronizer.h>
#include <message_filters/sync_policies/approximate_time.h>void callback(const sensor_msgs::Image::ConstPtr& image_msg, const sensor_msgs::PointCloud2::ConstPtr& pcl_msg)
{// 处理同步的消息// image_msg 和 pcl_msg 在相同时间戳下ROS_INFO("Received synchronized the message of       image_msg at time %f", image_msg->header.stamp.toSec());ROS_INFO("Received synchronized the message of pcl_msg message at time %f", pcl_msg->header.stamp.toSec());ROS_INFO("------------------------------------------------------------------------");
}int main(int argc, char** argv)
{ros::init(argc, argv, "synchronized_subscriber");ros::NodeHandle nh;// 创建两个订阅者message_filters::Subscriber<sensor_msgs::Image> image_sub(nh, "/image_topic", 1);message_filters::Subscriber<sensor_msgs::PointCloud2> pcl_sub(nh, "/pointcloud_topic", 1);// 定义同步策略为 ApproximateTimetypedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::PointCloud2> MySyncPolicy;// 创建同步器对象message_filters::Synchronizer<MySyncPolicy> sync(MySyncPolicy(10), image_sub, pcl_sub);// 注册回调函数sync.registerCallback(boost::bind(&callback, _1, _2));ros::spin();return 0;
}

 4.3 CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)
project(synchronizer)## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTScv_bridgeroscppsensor_msgsstd_msgsmessage_filterspcl_conversions
)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
message(STATUS "version: ${OpenCV_VERSION}")find_package(PCL REQUIRED QUIET)
include_directories(${PCL_INCLUDE_DIRS})
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()################################################
## Declare ROS messages, services and actions ##
################################################## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend tag for "message_generation"
##   * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependency has been pulled in
##     but can be declared for certainty nonetheless:
##     * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   sensor_msgs#   std_msgs
# )################################################
## Declare ROS dynamic reconfigure parameters ##
################################################## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
##   * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
##   * add "dynamic_reconfigure" to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * uncomment the "generate_dynamic_reconfigure_options" section below
##     and list every .cfg file to be processed## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
#   cfg/DynReconf1.cfg
#   cfg/DynReconf2.cfg
# )###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
#  INCLUDE_DIRS include
#  LIBRARIES synchronizer
#  CATKIN_DEPENDS cv_bridge roscpp sensor_msgs std_msgs
#  DEPENDS system_lib
# DEPENDS OpenCV
)###########
## Build ##
############# Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include${catkin_INCLUDE_DIRS}
)## Declare a C++ library
# add_library(image_publisher
#   src/image_publisher.cpp
# )## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
add_executable(image_publisher /home/guo/Downloads/syn_ws/src/synchronizer/src/image_publisher.cpp)
add_executable(synchronized_subscriber /home/guo/Downloads/syn_ws/src/synchronizer/src/synchronized_subscriber.cpp)## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})## Specify libraries to link a library or executable target against
target_link_libraries(image_publisher${catkin_LIBRARIES}${OpenCV_INCLUDE_DIRS}${PCL_INCLUDE_DIRS}
)target_link_libraries(synchronized_subscriber${catkin_LIBRARIES}
)#############
## Install ##
############## all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )#############
## Testing ##
############### Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_synchronizer.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

4.4 launch文件

<launch><!-- Start the image_publisher_node --><node name="synchronizer1" pkg="synchronizer" type="image_publisher" output="screen"/><!-- Start the synchronized_subscriber_node --><node name="synchronizer2" pkg="synchronizer" type="synchronized_subscriber" output="screen"/></launch>

4.5 代码解释

  • 引入必要的ROS和消息过滤器头文件。
  • 定义回调函数 callback,用于处理同步的图像和激光雷达数据。
  • main 函数中创建 message_filters::Subscriber 对象,分别订阅相机图像和激光雷达扫描数据。
  • 使用 message_filters::sync_policies::ApproximateTime 创建 message_filters::Synchronizer 对象,设置时间同步策略为近似同步。
  • 注册回调函数到 Synchronizer 对象中,它将在图像和激光雷达数据近似同步时调用。

5. 运行和测试

        确保ROS环境已经启动,然后运行launch文件:

        运行结果:

图像和点云的时间辍实现同步。 

 

这篇关于ROS消息过滤器之 message_filters::Synchronizer 使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382301

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF