ROS消息过滤器之 message_filters::Synchronizer 使用详解

2023-11-10 11:12

本文主要是介绍ROS消息过滤器之 message_filters::Synchronizer 使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在ROS中,当我们有多个传感器发布的数据需要同步时,message_filters::Synchronizer 是一个非常有用的工具。它可以确保多个消息在时间上是同步的,以便更有效地处理数据。

1.什么是ROS消息过滤器?

ROS消息过滤器是一种用于处理ROS消息的工具,允许我们对消息进行过滤、同步和组合。这对于在机器人感知中整合不同传感器数据或在控制中同步多个输入源非常重要。

2.message_filters::Synchronizer 简介

        message_filters::Synchronizer 是ROS中消息过滤器的一部分,专门用于同步多个消息。它可以确保多个发布者发布的消息在时间上是同步的,以便在回调函数中处理这些消息。

3.使用场景

        当你有多个传感器发布的数据,需要确保这些数据在同一时刻可用时,message_filters::Synchronizer 就派上用场了。例如,在处理相机图像和激光雷达扫描数据时,你可能希望它们在相同的时间戳上可用,以便更准确地进行感知。

4.示例代码

工程结构:

4.1 发布者节点 (image_publisher.cpp)

#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/highgui/highgui.hpp>#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/PointCloud2.h>
#include <cv_bridge/cv_bridge.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>int main(int argc, char** argv)
{ros::init(argc, argv, "image_and_pointcloud_publisher");ros::NodeHandle nh;// 创建一个发布者,发布图像消息到 "/image_topic" 话题,缓存队列大小为 10ros::Publisher image_pub = nh.advertise<sensor_msgs::Image>("/image_topic", 10);// 创建一个发布者,发布点云消息到 "/pointcloud_topic" 话题,缓存队列大小为 10ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("/pointcloud_topic", 10);// 创建图像消息sensor_msgs::Image image_msg;// 设置图像消息的头部信息image_msg.header.stamp = ros::Time::now();image_msg.header.frame_id = "camera_frame";// 填充图像数据(这里假设你已经有一个图像数据,例如使用OpenCV加载的图像)cv::Mat image = cv::imread("/home/guo/Pictures/1.png", cv::IMREAD_COLOR);// 使用cv_bridge将OpenCV图像转换为ROS图像消息cv_bridge::CvImage cv_image;cv_image.image = image;cv_image.encoding = "bgr8"; // 8-bit, 3 channelimage_msg = *cv_image.toImageMsg();// 创建点云消息sensor_msgs::PointCloud2 pcl_msg;// 填充点云数据(这里假设你已经有一个点云数据,例如使用PCL库生成的点云)pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);// Populate your point cloud data here...pcl::io::loadPCDFile("/home/guo/Downloads/pcd/1.pcd", *cloud);// 使用PCL库将点云转换为ROS点云消息pcl::toROSMsg(*cloud, pcl_msg);pcl_msg.header.stamp = ros::Time::now();pcl_msg.header.frame_id = "camera_frame";ros::Rate loop_rate(1); // 发布频率为1Hzwhile (ros::ok()){// 更新时间戳image_msg.header.stamp = ros::Time::now();pcl_msg.header.stamp = ros::Time::now();// 发布图像消息image_pub.publish(image_msg);// 发布点云消息pcl_pub.publish(pcl_msg);// 循环等待ros::spinOnce();loop_rate.sleep();}return 0;
}

4.2 订阅者节点 (synchronized_subscriber.cpp)

#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/PointCloud2.h>
#include <message_filters/subscriber.h>
#include <message_filters/synchronizer.h>
#include <message_filters/sync_policies/approximate_time.h>void callback(const sensor_msgs::Image::ConstPtr& image_msg, const sensor_msgs::PointCloud2::ConstPtr& pcl_msg)
{// 处理同步的消息// image_msg 和 pcl_msg 在相同时间戳下ROS_INFO("Received synchronized the message of       image_msg at time %f", image_msg->header.stamp.toSec());ROS_INFO("Received synchronized the message of pcl_msg message at time %f", pcl_msg->header.stamp.toSec());ROS_INFO("------------------------------------------------------------------------");
}int main(int argc, char** argv)
{ros::init(argc, argv, "synchronized_subscriber");ros::NodeHandle nh;// 创建两个订阅者message_filters::Subscriber<sensor_msgs::Image> image_sub(nh, "/image_topic", 1);message_filters::Subscriber<sensor_msgs::PointCloud2> pcl_sub(nh, "/pointcloud_topic", 1);// 定义同步策略为 ApproximateTimetypedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::PointCloud2> MySyncPolicy;// 创建同步器对象message_filters::Synchronizer<MySyncPolicy> sync(MySyncPolicy(10), image_sub, pcl_sub);// 注册回调函数sync.registerCallback(boost::bind(&callback, _1, _2));ros::spin();return 0;
}

 4.3 CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)
project(synchronizer)## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTScv_bridgeroscppsensor_msgsstd_msgsmessage_filterspcl_conversions
)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
message(STATUS "version: ${OpenCV_VERSION}")find_package(PCL REQUIRED QUIET)
include_directories(${PCL_INCLUDE_DIRS})
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()################################################
## Declare ROS messages, services and actions ##
################################################## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend tag for "message_generation"
##   * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependency has been pulled in
##     but can be declared for certainty nonetheless:
##     * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   sensor_msgs#   std_msgs
# )################################################
## Declare ROS dynamic reconfigure parameters ##
################################################## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
##   * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
##   * add "dynamic_reconfigure" to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * uncomment the "generate_dynamic_reconfigure_options" section below
##     and list every .cfg file to be processed## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
#   cfg/DynReconf1.cfg
#   cfg/DynReconf2.cfg
# )###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
#  INCLUDE_DIRS include
#  LIBRARIES synchronizer
#  CATKIN_DEPENDS cv_bridge roscpp sensor_msgs std_msgs
#  DEPENDS system_lib
# DEPENDS OpenCV
)###########
## Build ##
############# Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include${catkin_INCLUDE_DIRS}
)## Declare a C++ library
# add_library(image_publisher
#   src/image_publisher.cpp
# )## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
add_executable(image_publisher /home/guo/Downloads/syn_ws/src/synchronizer/src/image_publisher.cpp)
add_executable(synchronized_subscriber /home/guo/Downloads/syn_ws/src/synchronizer/src/synchronized_subscriber.cpp)## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})## Specify libraries to link a library or executable target against
target_link_libraries(image_publisher${catkin_LIBRARIES}${OpenCV_INCLUDE_DIRS}${PCL_INCLUDE_DIRS}
)target_link_libraries(synchronized_subscriber${catkin_LIBRARIES}
)#############
## Install ##
############## all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )#############
## Testing ##
############### Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_synchronizer.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

4.4 launch文件

<launch><!-- Start the image_publisher_node --><node name="synchronizer1" pkg="synchronizer" type="image_publisher" output="screen"/><!-- Start the synchronized_subscriber_node --><node name="synchronizer2" pkg="synchronizer" type="synchronized_subscriber" output="screen"/></launch>

4.5 代码解释

  • 引入必要的ROS和消息过滤器头文件。
  • 定义回调函数 callback,用于处理同步的图像和激光雷达数据。
  • main 函数中创建 message_filters::Subscriber 对象,分别订阅相机图像和激光雷达扫描数据。
  • 使用 message_filters::sync_policies::ApproximateTime 创建 message_filters::Synchronizer 对象,设置时间同步策略为近似同步。
  • 注册回调函数到 Synchronizer 对象中,它将在图像和激光雷达数据近似同步时调用。

5. 运行和测试

        确保ROS环境已经启动,然后运行launch文件:

        运行结果:

图像和点云的时间辍实现同步。 

 

这篇关于ROS消息过滤器之 message_filters::Synchronizer 使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382301

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比