PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m)

2023-11-10 05:41

本文主要是介绍PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132047940

HHblits
MMseqs2HHblits 的算法比较:

  • 蛋白质序列搜索算法 MMseqs2 与 HHblits 的搜索结果差异
  • HHblits 算法搜索 BFD 与 UniRef30 的结果分析

Paper: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment

  • 2011.12 Nature Methods

HHblits 是一种基于 HMM-HMM 对齐的迭代蛋白质序列搜索工具,可以快速、灵敏、准确地找到数据库中与查询序列相似的蛋白质序列。HHblits 的主要特点有:

  • 使用隐马尔可夫模型(HMM)来表示查询序列和数据库序列,而不是使用简单的氨基酸序列。HMM 是一种统计模型,可以捕捉序列的进化变化和保守区域,从而提高序列相似性的检测能力。
  • 使用一种离散化的预过滤器,可以快速地筛选出与查询序列有潜在相似性的数据库序列,从而减少了 HMM-HMM 对齐的计算量。这种预过滤器可以将搜索时间提高 2500 倍,而不损失搜索灵敏度。
  • 使用迭代的方法,可以利用上一轮搜索得到的多序列比对(MSA)来构建更精确的查询 HMM,来进行下一轮搜索。这样可以不断地扩展搜索范围,找到更多的相关序列。

bfd_uniref_hits.a3m 中,以 UniRef100 开头的序列描述,即来源于 UniRef30 数据库,即:

>UniRef100_A0A2X3SLP5 Uncharacterized protein n=2 Tax=Streptococcus equi TaxID=1336 RepID=A0A2X3SLP5_STRSZ
-TNtsSQEVDQVAQALELMFDNNVSTSNFKKYVNNNFSDSEIAIAELELESRISNSrsefrvawnemggCIAGKIRDEFFAMISVGTIVKYAQKKAWKELALVVLKFVKANGLKTNAIIVAGQLALWAVQCG

a3m 文件格式是用于表示蛋白质序列比对的文本格式,是 FASTA 格式的一种扩展。在 a3m 文件格式中,蛋白质序列用单个字母表示,其中,匹配用大写字母表示,删除用横线(-) 表示,插入用小写字母表示,去掉小写字母,只保留大写字母与横线(-) ,则长度与目标序列相同。

其他序列就是来源于 BFD,以 SRR 开头的数量较多,即:

>SRR5690606_14355373 
-----QIEELAAQLEFLMEEALiiENGERTfdfEKIENEFgkeVKDEIKMLTVDAQVWqvqpgaitlaanqPWKDCMVGAIKDHFGvALVTAaleGGLWAYLEKKAYKEAAKLLVKF----AVGTNAVGIAGTLIYYGGKCT
...
>SoimicmetaTmtLPB_FD_contig_61_1212631_length_209_multi_1_in_0_out_0_1 # 2 # 76 # 1 # ID=3042713_1;partial=10;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.693
---NEEIEQLAADLEFLMEEAAiydEKGKVVnfdfDLLEERFgYVLELEMLKEEIEAYnattegd--NDeiqlfswksCMISALKGHFGvALIEValtGGLWSYLEKKAYKEAAKLLLKI----GIEGNVIGLTAFLTWYSVDCI
...
>APFre7841882654_1041346.scaffolds.fasta_scaffold441692_2 # 291 # 482 # 1 # ID=441692_2;partial=01;start_type=ATG;rbs_motif=AGGAG;rbs_spacer=5-10bp;gc_cont=0.609
-EIPLEAqgisiFGANHCDGareserliahelAHQWFgnsvtakrwrhiwlhegFACYAEWLWSEHSGdrsaDEWAhhfHEKLASSPQDLLLADPGPRDMFddrvykrgalTLHVLRRTLGDENFFALLKDWTSRHRHGSAVTD------DFTGLAANYTDQSLRPLWDAWLYS--TEVPALDAESX-------------------------------------------------------------------------------------------------------------------
...

因此,使用 MMseqs2 分别搜索 BFD 和 UniRef30,再合并,与使用 HHblits 一起搜索两个库的效果相同,同时也可以计算不同搜索算法的结果差异,即:

  • 测试序列来源于 CASP15 提供的官方序列。
  • MMseqs2 的搜索参数,num_iterations 是 3,sensitivity 是 8,即 i3s8,其余默认。
  • HHblits 使用 AF2 默认的搜索工具,数据库也保持一致。

即:

Img

源码如下:

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2022. All rights reserved.
Created by C. L. Wang on 2023/8/1
"""
import osfrom myutils.project_utils import read_file
from root_dir import DATA_DIRclass BfdUniref30Overlap(object):"""计算 MMseqs2 与 HHblits 搜索结果之间的重叠度"""def __init__(self):pass@staticmethoddef count_seqs(data_lines):return len(data_lines) // 2 - 1def split_hhblits(self, data_lines):"""拆分 Uniref30 与 BFD 数据"""n = len(data_lines)n = n // 2 * 2u_desc_list, u_seq_list = [], []b_desc_list, b_seq_list = [], []for i in range(2, n, 2):desc = data_lines[i][1:]seq = data_lines[i+1]seq = seq.replace("-", "")if desc.startswith("UniRef100"):desc = desc.split(" ")[0]u_desc_list.append(desc)u_seq_list.append(seq)else:items = desc.split("|")if len(items) > 1:desc = items[1]b_desc_list.append(desc)b_seq_list.append(seq)unique_u_seq = len(list(set(u_seq_list)))unique_u_desc = len(list(set(u_desc_list)))print(f"[Info] unique uniref30 desc: {unique_u_desc} / {len(u_desc_list)}")print(f"[Info] unique uniref30 seqs: {unique_u_seq} / {len(u_seq_list)}")unique_b_seq = len(list(set(b_seq_list)))unique_b_desc = len(list(set(b_desc_list)))print(f"[Info] unique bfd desc: {unique_b_desc} / {len(b_desc_list)}")print(f"[Info] unique bfd seqs: {unique_b_seq} / {len(b_seq_list)}")return u_desc_list, u_seq_list, b_desc_list, b_seq_listdef process(self, uniref30_path, bfd_path, hhblits_path):assert os.path.isfile(uniref30_path) and os.path.isfile(bfd_path) and os.path.isfile(hhblits_path)print(f"[Info] mmseqs uniref30: {uniref30_path}")print(f"[Info] mmseqs bfd: {bfd_path}")print(f"[Info] hhblits bfd and uniref30: {hhblits_path}")uniref30_lines = read_file(uniref30_path)bfd_lines = read_file(bfd_path)hhblits_lines = read_file(hhblits_path)print(f"[Info] uniref30: {self.count_seqs(uniref30_lines)}, bfd: {self.count_seqs(bfd_lines)}, "f"hhblits: {self.count_seqs(hhblits_lines)}")# ---------- 统计 MMseqs2 Uniref30 ---------- #u_desc_list, u_seq_list = [], []n = len(uniref30_lines)n = n // 2 * 2for i in range(2, n, 2):u_name = uniref30_lines[i][1:].split("\t")[0]u_seq = uniref30_lines[i+1].replace("-", "")assert u_name.startswith("UniRef100")u_desc_list.append(u_name)u_seq_list.append(u_seq)assert len(u_desc_list) == self.count_seqs(uniref30_lines)unique_u_seq = len(list(set(u_seq_list)))unique_u_desc = len(list(set(u_desc_list)))print(f"[Info] unique uniref30 desc: {unique_u_desc} / {len(u_desc_list)}")print(f"[Info] unique uniref30 seqs: {unique_u_seq} / {len(u_seq_list)}")# ---------- 统计 MMseqs2 Uniref30 ---------- ## ---------- 统计 BFD Uniref30 ---------- #b_desc_list, b_seq_list = [], []n = len(bfd_lines)n = n // 2 * 2for i in range(2, n, 2):b_name = bfd_lines[i][1:].split("\t")[0]b_seq = bfd_lines[i+1].replace("-", "")b_desc_list.append(b_name)b_seq_list.append(b_seq)assert len(b_desc_list) == self.count_seqs(bfd_lines)unique_b_seq = len(list(set(b_seq_list)))unique_b_desc = len(list(set(b_desc_list)))print(f"[Info] unique bfd desc: {unique_b_desc} / {len(b_desc_list)}")print(f"[Info] unique bfd seqs: {unique_b_seq} / {len(b_seq_list)}")# ---------- 统计 BFD Uniref30 ---------- ## ---------- 统计 HHblits BFD and Uniref30 ---------- #hu_desc_list, hu_seq_list, hb_desc_list, hb_seq_list = self.split_hhblits(hhblits_lines)assert len(hu_desc_list) + len(hb_desc_list) == self.count_seqs(hhblits_lines)# ---------- 统计 HHblits BFD and Uniref30 ---------- ## ---------- 统计 交集 ---------- #num_u_desc_is = len(set(u_desc_list).intersection(set(hu_desc_list)))print(f"[Info] uniref30 desc intersection: {num_u_desc_is}")num_u_seqs_is = len(set(u_seq_list).intersection(set(hu_seq_list)))print(f"[Info] uniref30 seqs intersection: {num_u_seqs_is}")num_b_desc_is = len(set(b_desc_list).intersection(set(hb_desc_list)))print(f"[Info] bfd desc intersection: {num_b_desc_is}")num_b_seqs_is = len(set(b_seq_list).intersection(set(hb_seq_list)))print(f"[Info] bfd seqs intersection: {num_b_seqs_is}")# ---------- 统计 交集 ---------- ## ---------- 统计 总数 ---------- #unique_mmseqs_seqs = list(set(u_seq_list + b_seq_list))unique_hhblits_seqs = list(set(hu_seq_list + hb_seq_list))print(f"[Info] unique_mmseqs_ses: {len(unique_mmseqs_seqs)}")print(f"[Info] unique_hhblis_ses: {len(unique_hhblits_seqs)}")# ---------- 统计 总数 ---------- #def main():fasta_name = "T1104-D1_A117"# fasta_name = "T1137s8-D1_A251"# fasta_name = "T1188-D1_A573"# fasta_name = "T1157s1_A1029"uniref30_path = os.path.join(DATA_DIR, "overlap", fasta_name, f"{fasta_name}-uniref30-i3s8.a3m")bfd_path = os.path.join(DATA_DIR, "overlap", fasta_name, f"{fasta_name}-bfd-i3s8.a3m")hhblits_path = os.path.join(DATA_DIR, "overlap", fasta_name, "bfd_uniref_hits.a3m")buo = BfdUniref30Overlap()buo.process(uniref30_path, bfd_path, hhblits_path)if __name__ == "__main__":main()

这篇关于PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380690

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、