CVPR 2023 | 超越MAE!谷歌提出MAGE:图像分类和生成达到SOTA!

2023-11-10 05:20

本文主要是介绍CVPR 2023 | 超越MAE!谷歌提出MAGE:图像分类和生成达到SOTA!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉】微信技术交流群

转载自:机器之心

在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架MAGE,同时在图像识别和生成两大任务上实现了 SOTA。

识别和生成是人工智能领域中的两大核心任务,如果能将二者合并到一个统一的系统中,这两个任务应该能实现互补。事实上,在自然语言处理中,像 BERT [1] 这样的模型不仅能够生成高质量的文本,还能够提取文本中的特征。

然而,在计算机视觉领域,目前的图像生成模型和识别模型大多是分开进行训练,没有充分利用这两个任务的协同作用。这主要是由于图像生成和图像识别的模型通常具有本质上的结构差异:图像生成的输入是低维度的特征或噪声,而输出是高维度的原始图像;与之相反,图像识别的输入是高维度的原始图像,而输出是低维度的特征。

最近,来自 MIT 和 Google Research 的研究人员提出了一种基于图像语义符掩码的表征学习方法,首次在一个统一的框架中实现了图像生成和表征学习,并在多个数据集上取得了 SOTA 表现。研究论文已被 CVPR 2023 接收,相关代码与预训练模型已开源。

80355ad73bfd192221bcbce5a9003436.png

MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis

  • 论文地址:https://arxiv.org/abs/2211.09117

  • 代码地址:https://github.com/LTH14/mage

在 CVPR 2022 上,MAE [2] 提出了一种基于图像掩码(MIM)的表征学习方法,并在多个子任务上取得了非常好的效果。在高达 75% 的掩码率下,MAE 可以重构出与原图语义十分贴合的图像,并借此让网络能够自监督地学习图像中的特征。然而,如图 1 所示, MAE 重建的图像虽然具有与原始图像相似的语义信息,但会出现严重的模糊与失真问题。类似的问题也出现在所有基于 MIM 的表征学习方法中。同时,目前的生成模型,不管是扩散模型还是 GAN,都缺乏提取高质量图像特征的能力。

731f3150d0616106702934f93ca701dd.png

图 1:MAE 与 MAGE 重构对比

方法概述

针对上述问题,本文作者提出了 MAGE(Masked Generative Encoder),首次实现了统一的图像生成和特征提取模型。与MIM直接作用于图像的掩码方法不同,MAGE 提出了基于图像语义符的 masked image token modeling 方法。如图所示,MAGE 首先使用 VQGAN [3] 编码器将原始图像转换为离散的语义符。之后,MAGE 对其进行随机掩码,并使用基于 transformer 的 encoder-decoder 结构对掩码进行重构,重构后的语义符可以通过 VQGAN 解码器生成原始图像。通过在训练中使用不同的掩码率,MAGE 可以同时进行生成模型(接近 100% 掩码率)和表征学习(50%-80% 掩码率)的训练。如图 1 所示,MAGE 重建出的图像不仅具有与原始图像一致的语义信息,还能够同时保证生成图像的多样性与真实性。

b352037960efaf982faffa523b497362.png

图 2:MAGE 结构图

实验结果

MAGE 在多个图像生成与图像识别任务上都达到或超过了 SOTA。

39e584b78b94e04e89087dcdcb24a6ac.jpeg

在 ImageNet 的无监督图像生成任务中,MAGE 的 FID 从之前的 > 20 降至 7.04,甚至达到了有监督图像生成的水准(有监督 Latent Diffusion 在 ImageNet 上的 FID 为 3.60):

cb62bcbcea9d5e596d622e429b1c1861.png

5eff38747603a62ab9e8e739a6e0f8df.png

图3:MAGE 无监督图像生成样例

MAGE 还能够进行各类图像编辑工作,包括 image inpainting、outpainting、uncropping:

2d662325f7bb439d1b81942e863cccd0.png

4125aeca12374703d5aff7ca3c370448.png

9c0a258408b2d4c4dde26226f1d91566.png

929e8dcb56a285efd6b2541b6e830a4f.png

图 4:MAGE 图像编辑样例

在表征学习方面,MAGE 在 ImageNet linear probing、少样本学习、迁移学习等任务中,相较于目前的 MIM 方法有了大幅提升,并且可以达到或超过目前最优的自监督学习方法的水平。

b72ffabcd72f08287760abeec29e2970.png

6185bd934f33efe86eaa144446301e62.png

结语

本文旨在将图像生成与表征学习统一起来。为此,本文作者提出了 MAGE,一种基于图像语义符掩码的自监督学习框架。该框架简洁、高效,并首次在图像生成和表征学习上都达到或超越了 SOTA 的表现。感兴趣的读者可以查看论文原文,以了解更多研究细节。

参考文献:

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders are scalable ´ vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000– 16009, 2022.

[3] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12873–12883, 2021.

点击进入—>【计算机视觉】微信技术交流群

最新CVPP 2023论文和代码下载

 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

多模态和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-多模态或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如多模态或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲扫码或加微信号: CVer333,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看

这篇关于CVPR 2023 | 超越MAE!谷歌提出MAGE:图像分类和生成达到SOTA!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380579

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编