显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优

本文主要是介绍显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

鲸鱼优化算法(whale optimization algorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,与其它群体智能优化算法相比,WOA算法结构新颖, 控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。

WOA算法在面对多变量复杂问题时也存在搜索效率低、收敛能力差、易陷入局部最优等缺点。因此,为提升WOA的优化性能,本文提出一个WOA的变体,即融合模拟退火和自适应变异的混沌鲸鱼优化算法。

00 文章目录

1 鲸鱼优化算法原理

2 改进的鲸鱼优化算法

3 代码目录

4 算法性能

5 源码获取

6 总结

01 鲸鱼优化算法原理

鲸鱼优化算法原理及其MATLAB代码获取方式在作者往期文章,这里不再赘述

02 改进的鲸鱼优化算法

2.1 混沌反向学习初始化种群

群体的算法的初始化影响其搜索性能。由于没有先验信息,WOA通常是由随机初始化产生的。这种策略在某种意义上是有用的。但是,有时候鲸鱼在搜索域中的分布并不均匀,这可能会使鲸鱼远离全局最优解,使收敛到最优解的搜索时间更长,导致收敛速度较低。混沌映射因具有随机性、灵敏性等特点,可以满足算法搜索的多样性。

目前文献中常用的混沌扰动方程有Logistic映射和Tent映射等。由文献[3]可知Logistic映射的分布特点是:中间取值概率比较均匀,但在两端概率特别高,因此当全局最优点不在设计变量空间的两端时,对寻找最优点是不利的。而Tent混沌映射结构简单,具有比Logistic混沌映射更好的遍历均匀性和更快的搜索速度,同时,文献[2]已经从理论上证明了基于反向学习的种群初始化可以得到较好的初始解,进而加快收敛速度。因此,本文利用这两种初始化方法的优点,提出了基于混沌映射和反向学习的思想生成初始化种群。

考虑到 Tent 映射易在小循环周期和不动点上出现问题,为避免Tent混沌序列在迭代时落入小周期点和不稳定周期点,在典型Tent映射的表达式中添加随机数,即
在这里插入图片描述

其中: N 是序列内粒子的个数。引入随机变量rand(0, 1) /N 不仅仍然保持了Tent混沌映射的随机性、遍历性、规律性,而且能够有效避免迭代落入小周期点和不稳定周期点内。
在这里插入图片描述

其次,利用该混沌序列Zkj生成对应的初始种群xij:​
在这里插入图片描述

然后,生成反向种群x*ij:
在这里插入图片描述

最后,比较初始种群和反向种群,选择适应度最优的N个个体组成初始种群,通过此初始化策略,能够在较为均匀分布的种群中进一步得到优质解,从而加快收敛速度。

2.2 非线性收敛因子

WOA算法中主要是两个系数参数A和C:
在这里插入图片描述

其中A主要取决于a,C主要取决于r。鲸鱼算法的全局勘探和局部开发都主要和A相关,换句话说,控制参数a对于算法的收敛速度和搜索精度起着至关重要的作用。当a较大时,算法具有较强的全局搜索能力,易于逃逸局部最优,但其局部开发能力弱,导致收敛速度下降。反之,如果a较小,则其局部开发能力较强,收敛速度加快,但易于陷入局部最优。

而在传统的WOA算法中,a从2到0线性递减,而在复杂优化问题中往往存在多个局部最优值,线性递减的策略反而会影响算法逃逸出局部最优的能力,因此本文重新提出一个非线性的收敛因子:
在这里插入图片描述

该非线性收敛因子a的仿真如图。
在这里插入图片描述

由图可以看出,在迭代前期,a 取值较大且衰减速度较慢,全局勘探能力较强,有利于避免种群陷入局部最优值。在迭代后期,a迅速衰减至较小的值,局部开发能力较强,有利于加速种群收敛。因此该非线性收敛因子更新策略可以更好地应用于非线性复杂优化问题的求解。

2.3 动态惯性权重

由于鲸鱼在螺旋更新位置的捕猎过程中猎物目标对鲸鱼群位置更新的影响不同,受文献[3]的启发本文提出一种动态惯性权值策略,公式如下:
在这里插入图片描述

其中,wmax和wmin是权重变化的最大和最小值,Tmax为最大迭代次数,t为当前迭代次数。

于是螺旋位置更新公式变为:

在这里插入图片描述

权重参数 ω 在迭代前期取得较大值,使鲸鱼算法具有较强的全局搜索能力,防止其陷入局部极值;在迭代后期取得较小值,此时鲸鱼算法有较强的局部搜索能力,可加速算法收敛得到最优解。

2.4 模拟退火操作及自适应变异扰动

模拟退火算法(Simulated Annealing,SA)由Metropolis在1953年提出[4],其特点为在一定的概率情况下保留劣质群体,增加种群的多样性,在一定程度上提高了跳出局部最优的能力。本文将模拟退火思想融入WOA算法中。

同时,考虑到迭代后期,由于搜索策略的原因,种群中所有鲸鱼个体都会向最优个体聚集,导致种群多样性降低。如果此时最优个体为局部最优解,则算法将出现早熟收敛。为了防止出现这类问题,本文提出了自适应的变异扰动,其公式如下:

在这里插入图片描述

其中gaussian为高斯变异,cauchy为柯西变异。从上式可以看出,算法开始运行时,t值较小,柯西变异的权值较大,通过柯西变异获得较大步长,避免算法陷入局部最优解。随着算法不断运行,t 值较大, 高斯变异的权值较大,高斯变异杰出的局部搜索能力使得候选解在局部范围进行精确搜索,提高算法的寻优精度。

通过自适应的变异扰动产生新解,再凭借模拟退火算法能够以某种概率接受较差解的方式,跳出局部最优值,从而弥补WOA算法缺陷。

2.5 算法流程

本文的算法流程如下:
在这里插入图片描述

03 代码目录

在这里插入图片描述

其中,Main_AAMCWOA.m为主程序,代码注释详细,一键运行Main_AAMCWOA即可得到所有运行结果,运行结果包括混沌序列比较图、控制参数比较图以及算法在各测试函数上的迭代图,最后将生成excel表,包含算法在各函数迭代n次的平均值,均值、运行时间、最优解。而testFuc.m则可以快速生成测试函数的迭代图。

同时,文件也有乱码解决,给出了主要代码的txt文件。

部分代码如下,改进部分会有特别注释。

在这里插入图片描述

生成的excel表如下
在这里插入图片描述

图中,1-5分别对应AAMCWOA、GWO、WOA、PSO、GA算法

04 算法性能

采用05年的标准测试函数来检验其寻优性能,该测试集是应用最多、最经典的测试集,包含23个Benchmark函数,其中F1-F5为单峰函数,F6-F12为基本的多峰函数,F13-F14为扩展的多峰函数,F15-F23为多峰组合函数,函数的具体信息如下:

在这里插入图片描述

其运行结果如下:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

由结果可以看到,改进的鲸鱼优化算法在几乎所有函数的收敛速度和精度都更好,改进算法的效果良好。

05 源码获取

可在作者微信公众号获取:KAU的云实验台

注:文章中的所有图都可由程序直接运行出

06 总结

本文提出的改进鲸鱼优化算法具有良好的性能,改进有效,同时,本文的改进策略也可以进行推广,比如算法最后的模拟退火和自适应变异策略便可用于很多算法用来跳出局部最优,同时本文的改进也有进一步提升的空间,比如可以对鲸鱼优化算法的位置更新策略进一步改进,如加入Levy飞行、差分进化等。

参考文献

[1] MIRJALILI S,LEWIS A. The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51一 67.

[2] 张强,李盼池.自适应分组混沌云模型蛙跳算法求解连续空间优化问题[J] .控制与决策,2015,30(5):923-928

[3] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proc of

IEEE Icec Conference, 1999.

[4] DUPANLOU I,SCHNEIDER S,EXCOFFIER L. A simulated annealing approach to define the genetic struc⁃ ture of populations[J]. Molecular Ecology,2002,11 (12):2571 - 2581.

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看 (ง•̀_•́)ง(不点也行)

这篇关于显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380573

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参