全国5米高程DEM数据及衍生的坡度数据

2023-11-10 02:44

本文主要是介绍全国5米高程DEM数据及衍生的坡度数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。


    坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。

    坡度是地表单元陡缓的程度,用以表示斜坡的斜度,常用于标记丘陵、屋顶和道路的斜坡的陡峭程度。全国坡度分布数据是根据5米高程dem进行拼接、转换、坡度计算等处理得到的,格式为栅格,空间分辨率为10-1000米,空间参考系为wgs84或CGCS2000,空间范围覆盖全国。

      (1)百分比法

  表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下: 

                             坡度 = (高程差/水平距离)x100% 

  (2)度数法
  用度数来表示坡度,利用反三角函数计算而得,其公式如下:

                             tanα(坡度)= 高程差/水平距离  

                 通常,将坡度分为五级:
                 1级:坡度≤2度

                 2级:2<坡度≤6度
                 3级:6<坡度≤15度

                 4级:15<坡度≤25度
                 5级:坡度>25度

图片

5米DEM应用

高分辨率、高精度DEM数据在科学、工程、军事、社会经济等领域发挥着基础重要作用,特别是在地质灾害、全球变化与应对等方面,例如滑坡监测、冰川变化、海岸带淹没等。

1.地质灾害应用

地质灾害通常定义为对生命、财产和环境具有潜在风险的地质状态和过程,包括自然灾害(如地震、滑坡、火山、海啸和洪水等)与人类活动相关的灾害(如地下水抽取、矿产开采等导致的地面沉降、水污染、大气污染等)。

滑坡灾害是一种重大的地质灾害,每年造成大量人员伤亡和经济财产损失,近年来其发生频率随着气候变化和城市化的扩张而显著增加。高分辨率、高精度DEM是滑坡识别、滑坡监测、滑坡灾害分析与预测等阶段的关键数据集,可以用于茂密植被地区的滑坡现象与滑坡机制目视判读、滑坡目录制图、滑坡形变量求解、环境因子与触发因子分析等研究。

目前,高分辨率卫星遥感影像或LiDAR技术被广泛用于高地质风险区域的宏观地物覆盖、裸地DEM和地表形变获取。为了更好地融合不同观测平台的数据与模型,需要进一步结合地面实测数据(如地面三维激光扫描、地基InSAR、近景摄影测量等)和局部传感器网络开展DEM数据的验证与补充。

2.海岸带应用

根据联合国政府间气候变化专业委员会2014年发布的第5次气候变化评估报告,过去110 a间全球海平面上升了19 cm,在全球变暖大背景下,海平面上升仍呈加速趋势,预计到2100年全球海平面最大升幅为0.98 m。

海平面上升会淹没滨海低地,加剧风暴潮、洪涝、海岸侵蚀、海水入侵与土壤盐渍化等灾害,威胁沿海基础设施安全。沿海城市在城市规划和重大基础设施的设计参数制定中,需要充分考虑海平面上升等气候变化增量因素。过去二十多年,欧美国家及中国已经针对沿海地区开展了海平面上升影响评估和脆弱区划研究,根据经济社会发展程度采取防护、后退和顺应等策略应对海平面上升。

高程数据是确定海岸带地区自然灾害脆弱性的主要变量,特别是与洪水和海平面上升相关的淹没灾害,但是对于DEM高程不确定性对海平面上升评估结果的影响研究仍然较少。因此,需要了解底层高程数据质量,才能正确建模潜在影响,进而得到可靠的灾害评估结果。

  

图片

图片

    

    数字高程模型(DEM)是应用最广泛的地理信息数据之一,是进行三维空间处理和地形分析的数据基础。城市规划、交通线路规划、地质灾害防控、城区地籍监测等行业应用对DEM数据的精度提出更高的要求,需要用到分辨率更高、精度更高、更新周期更快的数据。为了更好地满足广大用户使用数据的需求,经过大量数据对比,地理遥感生态网平台现已上线5米分辨率的数字高程模型DEM数据!

这篇关于全国5米高程DEM数据及衍生的坡度数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379948

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语