全国5米高程DEM数据及衍生的坡度数据

2023-11-10 02:44

本文主要是介绍全国5米高程DEM数据及衍生的坡度数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。


    坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平距离的比值称为坡度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。

    坡度是地表单元陡缓的程度,用以表示斜坡的斜度,常用于标记丘陵、屋顶和道路的斜坡的陡峭程度。全国坡度分布数据是根据5米高程dem进行拼接、转换、坡度计算等处理得到的,格式为栅格,空间分辨率为10-1000米,空间参考系为wgs84或CGCS2000,空间范围覆盖全国。

      (1)百分比法

  表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下: 

                             坡度 = (高程差/水平距离)x100% 

  (2)度数法
  用度数来表示坡度,利用反三角函数计算而得,其公式如下:

                             tanα(坡度)= 高程差/水平距离  

                 通常,将坡度分为五级:
                 1级:坡度≤2度

                 2级:2<坡度≤6度
                 3级:6<坡度≤15度

                 4级:15<坡度≤25度
                 5级:坡度>25度

图片

5米DEM应用

高分辨率、高精度DEM数据在科学、工程、军事、社会经济等领域发挥着基础重要作用,特别是在地质灾害、全球变化与应对等方面,例如滑坡监测、冰川变化、海岸带淹没等。

1.地质灾害应用

地质灾害通常定义为对生命、财产和环境具有潜在风险的地质状态和过程,包括自然灾害(如地震、滑坡、火山、海啸和洪水等)与人类活动相关的灾害(如地下水抽取、矿产开采等导致的地面沉降、水污染、大气污染等)。

滑坡灾害是一种重大的地质灾害,每年造成大量人员伤亡和经济财产损失,近年来其发生频率随着气候变化和城市化的扩张而显著增加。高分辨率、高精度DEM是滑坡识别、滑坡监测、滑坡灾害分析与预测等阶段的关键数据集,可以用于茂密植被地区的滑坡现象与滑坡机制目视判读、滑坡目录制图、滑坡形变量求解、环境因子与触发因子分析等研究。

目前,高分辨率卫星遥感影像或LiDAR技术被广泛用于高地质风险区域的宏观地物覆盖、裸地DEM和地表形变获取。为了更好地融合不同观测平台的数据与模型,需要进一步结合地面实测数据(如地面三维激光扫描、地基InSAR、近景摄影测量等)和局部传感器网络开展DEM数据的验证与补充。

2.海岸带应用

根据联合国政府间气候变化专业委员会2014年发布的第5次气候变化评估报告,过去110 a间全球海平面上升了19 cm,在全球变暖大背景下,海平面上升仍呈加速趋势,预计到2100年全球海平面最大升幅为0.98 m。

海平面上升会淹没滨海低地,加剧风暴潮、洪涝、海岸侵蚀、海水入侵与土壤盐渍化等灾害,威胁沿海基础设施安全。沿海城市在城市规划和重大基础设施的设计参数制定中,需要充分考虑海平面上升等气候变化增量因素。过去二十多年,欧美国家及中国已经针对沿海地区开展了海平面上升影响评估和脆弱区划研究,根据经济社会发展程度采取防护、后退和顺应等策略应对海平面上升。

高程数据是确定海岸带地区自然灾害脆弱性的主要变量,特别是与洪水和海平面上升相关的淹没灾害,但是对于DEM高程不确定性对海平面上升评估结果的影响研究仍然较少。因此,需要了解底层高程数据质量,才能正确建模潜在影响,进而得到可靠的灾害评估结果。

  

图片

图片

    

    数字高程模型(DEM)是应用最广泛的地理信息数据之一,是进行三维空间处理和地形分析的数据基础。城市规划、交通线路规划、地质灾害防控、城区地籍监测等行业应用对DEM数据的精度提出更高的要求,需要用到分辨率更高、精度更高、更新周期更快的数据。为了更好地满足广大用户使用数据的需求,经过大量数据对比,地理遥感生态网平台现已上线5米分辨率的数字高程模型DEM数据!

这篇关于全国5米高程DEM数据及衍生的坡度数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379948

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本