机器视觉人体跌倒检测系统 - opencv python 计算机竞赛

本文主要是介绍机器视觉人体跌倒检测系统 - opencv python 计算机竞赛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器视觉人体跌倒检测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


课题背景和意义

在中国,每年在65岁以上老人中,平均每3人中就有1人发生意外跌倒,每年大约有9500位老年人死于旅行途中或跌倒;而平均年龄在65岁至69岁之间的人每200次跌倒中就有一次髋关节骨折。更严重的是,20%到30%的患者会出现中度到严重的并发症,很可能导致残疾。

而在中国,老年人口已经突破2.5亿,按照30%概览推算,每年有7500万人次的老年人摔倒。

1 实现方法

实现方法有两种,一种是基于计算机视觉的,一种是基于惯性传感器器件的。

这次主要还是介绍基于计算机视觉的,想了解或学习基于惯性传感器器件跌倒检测的同学联系学长,学长安排博客。

传统机器视觉算法

传统背景差分法,结合OpenCV中的图像高斯平滑预处理以及腐蚀、膨胀图像形态学处理方法,实现一个更符合实际场景需要的运动目标检测方法。实验效果比较分析表明,该目标检测算法较传统目标检测算法能够提取更加准确和完整的运动目标轮廓。
在这里插入图片描述

检测效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

背景差分法利用当前待处理视频帧图像与已经建模好的背景图像进行差分运算,利用阈值处理减少图像中的噪声干扰。优点是计算简单,且可以解决帧间差分法检测空洞的问题,得到的轮廓比较完整;
缺点是对于动态场景的适应能力不强, 对光照变化、 外来无关事物影响比较敏感。

基于机器学习的跌倒检测

人体行为辨识属于模式识别的分类决策的阶段,主要通过提取表征人体运动行为的特征向量,进而对人体的行为进行分析分类,最终用自然语言对其进行描述。有两种比较常见的方法:

(1) 基于模型的方法
基于模板的方法主要以人体模板作为主要的使用依据,可以通过对包含特定行为的视频帧序列进行转换的方法得到人体的模板,然后将被检测的人体行为与已经归类的人体行为模板进行匹配分类,从而得到行为识别的结果。基于模型的方法具有计算简单的优点,一般通过模型之间的距离比较完成人体行为的分类识别。缺点是需要大量足够的训练样本。

(2) 基于聚类的方法
基于聚类的方法把视频帧序列按照某种规则分类,在每一段进行特征的提取组成表示该段的特征矢量,进而通过聚类和相似度量等方法,将其中类别较少的段归为异常。常在处理离线状态下大量数据的异常检测问题时使用基于聚类的行为辨识方法。

SVM简介

支持向量机即常说的 SVM,全称是Support Vector
Machine。支持向量机是建立在统计学的VC维理论与结构化最小风险原理的基础上的,通过将向量映射到一个更高维的空间里,在这个空间建立一个最大间隔超平面,这个超平面被称为最优分类面,是支持向量机方法的理论基础。

SVM跌倒检测原理

我设计了一种运动物体行为辨识中采用基于两级SVM分类器的方法。

第一级SVM分类器用于判决运动物体是否处于非直立(下蹲、跌倒等)状态,提取物体的宽高比、最小包含物体矩形框面积、最小包含物体矩形框周长、运动物体高度等特征进行分类器的训练和分类判决。对于第一级分类器判决为非直立状态的图像帧,将它送入第二级SVM分类器进行分类判决。

第二级SVM分类器用于区分运动物体处于跌倒或其他的非直立状态,提取Zernike矩特征、运动物体的高度、运动物体的宽度、运动物体轮廓面积、运动物体轮廓周长等特征进行分类器的训练和分类判决。如果第二级
SVM 分类器判决为属于跌倒姿势状态类, 系统自动发出报警信息。

算法流程

在这里插入图片描述

算法效果

在这里插入图片描述

在这里插入图片描述

深度学习跌倒检测

介绍一个效果非常不错的网络,使用数据集在该网络下训练后得到的跌倒检测效果粉肠不错。

最终效果

在这里插入图片描述

网络原理

在这里插入图片描述
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于机器视觉人体跌倒检测系统 - opencv python 计算机竞赛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379234

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: