基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

本文主要是介绍基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Horn-Schunck光流法

4.2 Lucas-Kanade光流法

5.算法完整程序工程


1.算法运行效果图预览

HS光流

LK光流

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
while ~isDone(hReader)pause(0.1);% 从视频文件中读取视频帧frame      = step(hReader);% 将图像转换为灰度图Frame_gray = rgb2gray(frame);%1 计算光流场矢量flow       = estimateFlow(Flow_type,Frame_gray);% 每隔5行5列选择一个像素点,绘制它的光流图,20表示将光流幅值放大20倍lines      = [xpos, ypos, xpos+40*real(flow.Vx(locs)), ypos+40*imag(flow.Vy(locs))];% 将光流矢量添加到视频帧上vector     = step(hShape2, frame, lines);.................................................................% 统计汽车数量Num_car    = int32(sum(Checks));bbox(~Checks, :) = int32(-1);% 汽车边框result     = step(hShape1, frame, bbox);% 在视频帧添加文本显示汽车数量result = insertText(result,[1 1],sprintf('%d',Num_car));subplot(221);imshow(frame);title('原视频');subplot(222);imshow(vector);title('光流提取');subplot(223);imshow(Get_car); title('目标提取');subplot(224);imshow(result);   title('目标提取');
end
%释放视频
release(hReader);
0081

4.算法理论概述

       光流法是一种用于估计图像中像素或特征点运动的方法。在车辆检测与计数应用中,光流法可用于检测图像中车辆的运动,从而进行计数。这里我们将详细介绍Horn-Schunck光流法和Lucas-Kanade光流法,并对比它们在车辆检测计数应用中的表现。

4.1 Horn-Schunck光流法


       Horn-Schunck光流法是基于全局平滑约束的一种光流估计方法。它假设图像中相邻像素的运动矢量是平滑的。因此,它通过最小化全局能量函数来估计光流。Horn-Schunck光流法的能量函数可表示为:

       E_HS = ∫∫[(I_x * u + I_y * v + I_t)^2 + α^2 * (||∇u||^2 + ||∇v||^2)] dx dy

      其中,I_x 和 I_y 分别表示图像在x和y方向上的梯度;u 和 v 分别表示光流矢量在x和y方向上的分量;I_t 表示图像的时间导数;α 是平滑参数,用于控制平滑项和数据项的权重。

      通过最小化上述能量函数,可以得到光流矢量场 (u, v)。在实际应用中,通常采用迭代方法来求解该能量函数的最小值。

4.2 Lucas-Kanade光流法


       不同于Horn-Schunck光流法,Lucas-Kanade光流法是基于局部约束的光流估计方法。它假设在一个小邻域内,所有像素具有相同的运动矢量。因此,Lucas-Kanade方法通过最小化邻域内的像素误差来估计光流。Lucas-Kanade光流法的目标函数可表示为:

       E_LK = ∑_i[(I_i(x+u, y+v) - I_i(x, y))^2]

       其中,I_i 表示邻域内的像素强度;(x, y) 表示像素坐标;(u, v) 表示光流矢量。通过对目标函数进行泰勒展开,并求解线性方程组,可以得到光流矢量 (u, v)。
       在车辆检测计数应用中,Horn-Schunck光流法和Lucas-Kanade光流法各有优缺点。Horn-Schunck方法通过全局平滑约束能够获得较为鲁棒的光流估计,但在车辆边缘和细节处的估计可能不够准确。而Lucas-Kanade方法能够在局部范围内更准确地估计光流,但对于全局运动的估计可能较差。因此,在实际应用中,可以根据具体场景和需求选择合适的光流方法。

       为了进一步提高车辆检测计数的准确性,还可以结合其他计算机视觉技术,如背景建模、边缘检测、特征提取等。这些技术可以帮助更好地分离车辆与背景,准确地提取车辆边缘和特征,从而提高光流法估计的准确性。同时,还可以通过多帧图像间的关联和跟踪技术,实现车辆轨迹的连续检测和计数。这有助于克服光照变化、遮挡等挑战,提高车辆检测计数系统的鲁棒性和准确性。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379157

相关文章

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n