基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

本文主要是介绍基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Horn-Schunck光流法

4.2 Lucas-Kanade光流法

5.算法完整程序工程


1.算法运行效果图预览

HS光流

LK光流

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
while ~isDone(hReader)pause(0.1);% 从视频文件中读取视频帧frame      = step(hReader);% 将图像转换为灰度图Frame_gray = rgb2gray(frame);%1 计算光流场矢量flow       = estimateFlow(Flow_type,Frame_gray);% 每隔5行5列选择一个像素点,绘制它的光流图,20表示将光流幅值放大20倍lines      = [xpos, ypos, xpos+40*real(flow.Vx(locs)), ypos+40*imag(flow.Vy(locs))];% 将光流矢量添加到视频帧上vector     = step(hShape2, frame, lines);.................................................................% 统计汽车数量Num_car    = int32(sum(Checks));bbox(~Checks, :) = int32(-1);% 汽车边框result     = step(hShape1, frame, bbox);% 在视频帧添加文本显示汽车数量result = insertText(result,[1 1],sprintf('%d',Num_car));subplot(221);imshow(frame);title('原视频');subplot(222);imshow(vector);title('光流提取');subplot(223);imshow(Get_car); title('目标提取');subplot(224);imshow(result);   title('目标提取');
end
%释放视频
release(hReader);
0081

4.算法理论概述

       光流法是一种用于估计图像中像素或特征点运动的方法。在车辆检测与计数应用中,光流法可用于检测图像中车辆的运动,从而进行计数。这里我们将详细介绍Horn-Schunck光流法和Lucas-Kanade光流法,并对比它们在车辆检测计数应用中的表现。

4.1 Horn-Schunck光流法


       Horn-Schunck光流法是基于全局平滑约束的一种光流估计方法。它假设图像中相邻像素的运动矢量是平滑的。因此,它通过最小化全局能量函数来估计光流。Horn-Schunck光流法的能量函数可表示为:

       E_HS = ∫∫[(I_x * u + I_y * v + I_t)^2 + α^2 * (||∇u||^2 + ||∇v||^2)] dx dy

      其中,I_x 和 I_y 分别表示图像在x和y方向上的梯度;u 和 v 分别表示光流矢量在x和y方向上的分量;I_t 表示图像的时间导数;α 是平滑参数,用于控制平滑项和数据项的权重。

      通过最小化上述能量函数,可以得到光流矢量场 (u, v)。在实际应用中,通常采用迭代方法来求解该能量函数的最小值。

4.2 Lucas-Kanade光流法


       不同于Horn-Schunck光流法,Lucas-Kanade光流法是基于局部约束的光流估计方法。它假设在一个小邻域内,所有像素具有相同的运动矢量。因此,Lucas-Kanade方法通过最小化邻域内的像素误差来估计光流。Lucas-Kanade光流法的目标函数可表示为:

       E_LK = ∑_i[(I_i(x+u, y+v) - I_i(x, y))^2]

       其中,I_i 表示邻域内的像素强度;(x, y) 表示像素坐标;(u, v) 表示光流矢量。通过对目标函数进行泰勒展开,并求解线性方程组,可以得到光流矢量 (u, v)。
       在车辆检测计数应用中,Horn-Schunck光流法和Lucas-Kanade光流法各有优缺点。Horn-Schunck方法通过全局平滑约束能够获得较为鲁棒的光流估计,但在车辆边缘和细节处的估计可能不够准确。而Lucas-Kanade方法能够在局部范围内更准确地估计光流,但对于全局运动的估计可能较差。因此,在实际应用中,可以根据具体场景和需求选择合适的光流方法。

       为了进一步提高车辆检测计数的准确性,还可以结合其他计算机视觉技术,如背景建模、边缘检测、特征提取等。这些技术可以帮助更好地分离车辆与背景,准确地提取车辆边缘和特征,从而提高光流法估计的准确性。同时,还可以通过多帧图像间的关联和跟踪技术,实现车辆轨迹的连续检测和计数。这有助于克服光照变化、遮挡等挑战,提高车辆检测计数系统的鲁棒性和准确性。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379157

相关文章

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.