地平线X3pi基于YOLOv5-5.0版本程序上板运行推理

2023-11-09 22:30

本文主要是介绍地平线X3pi基于YOLOv5-5.0版本程序上板运行推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

地平线X3pi

基于YOLOv5-5.0版本进行模型转换

注意:首先确保本地环境支持YOLOv5能够正常运行。

1. 官方模型转换onnx模型(pt->onnx)

1.1、从官方网站github上下载5.0版本源码

链接直达

1.2、转换指令:

python export.py --weights yolov5s.pt --img 672 --batch 1 --opset=11

对于 YOLOv5 模型,我们在模型结构上的修改点主要在于几个输出节点处。由于目前的浮点转换工具链暂时不支持 5 维的 Reshape,所以在 prototxt中进行了删除,并将其移至后处理中执行。同时还添加了一个 transpose 算子,使该节点将以 NHWC 进行输出。这是因为在地平线芯片中, BPU 硬件本身以 NHWC 的layout 运行,这样修改后可以让 BPU 直接输出结果,而不在量化模型中引入额外的transpose。在转换onnx模型时需要先对代码进行修改。具体流程如下:

①、修改models目录下yolo.py


# x = x.copy() # for profilingz = [] # inference outputself.training |= self.exportfor i in range(self.nl):x[i] = self.m[i](x[i]) # convbs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()x[i] = x[i].permute(0, 2, 3, 1).contiguous() #此项为新修改内容if not self.training: # inferenceif self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i] = self._make_grid(nx, ny).to(x[i].device)y = x[i].sigmoid()y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # whz.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)

②修改export.py脚本(此脚本是导出onnx模型使用的)

由于地平线AI工具链支持的ONNX opset版本为 10 和 11, 请将 torch.onnx.export 的 opset_version 参数根据您要使用的版本进行修改。

将 torch.onnx.export 部分的默认输入名称参数由 ‘images’ 改为 ‘data’,与模型转换示例包的YOLOv5示例脚本保持一致。

将 parser.add_argument 部分中默认的数据输入尺寸640x640改为模型转换示例包YOLOv5示例中的672x672。

具体详见地平线官方手册:模型转换说明

修改完成执行上述指令即可完成onnx模型的转换,转换完成之后生成如下文件:
在这里插入图片描述

以下在转换过程中需注意:

1.3、 自己训练模型转 best.pt ——>onnx (需注意点)(根本原因在于模型与源码版本不匹配)

①、报错:报错AttributeError: Can’t get attribute ‘SPPF’

解决方法

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4f228oWa-1662096991372)(_v_images/20220805093256919_27643.png)]

②、在模型转换时需要将export.py从models文件夹中复制到源码的根目录下使用。或者将转换指令修改为:


python models/export.py --weights yolov5s.pt --img 672 --batch 1 --opset=11
1.4、使用AI工具链进行onnx模型转换BIN模型

转换过程详见官方手册:模型转换手册

或者使用官方的DDK包中已经写好的转换脚本进行意见模型转换

路径如下:/ddk/samples/ai_toolchain/horizon_model_convert_sample/04_detection/03_yolov5/mapper

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FID2kpqm-1662096991372)(_v_images/20220902113615948_387.png)]

下面说一下在转换BIN模型过程中我遇到的问题:

在使用地平线模型转换工具转换完成模型之后,进行单张图片推理的过程中遇到的问题。

按照官方5.0版本修改相应文件后,进行第四步sh 04_inference.sh推理时报错如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xkJhNsiq-1662096991373)(_v_images/20220831140742578_19613.png)]

:①、原因分析

原因是在进行第四步模型推理时是使用的上一步模型转换后生成的以下两种模型的其中一个来进行推理(此模型是专门用作推理使用的)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ls9pvNbC-1662096991373)(_v_images/20220831140935904_14634.png)]

使用Netron工具查看最终模型的数据数据(或者直接查看.pt模型转换完成onnx模型后的结果)最后是33

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EPfedLv0-1662096991373)(_v_images/20220831141238239_9018.png)]

②、修改代码

根据这一项数据更改后处理文件postprocess.py,存放在如下图所在位置:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JPkPa0Gz-1662096991374)(_v_images/20220831141445637_19796.png)]

在后处理文件postprocess.py中修改标签数量、reshape形状

修改标签数量:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9BvXyH70-1662096991374)(_v_images/20220831141626360_22733.png)]

修改reshape形状

因为转换完成的onnx模型最后以为数据是33,因此再此处需要修改为一致的但维度不能减少,所以修改为11,11x3=33

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p4sIiYKo-1662096991374)(_v_images/20220831141851553_21402.png)]

修改coco_metric.py和coco_classes.names中标签名称

coco_metric.py中修改:(根据自己模型标签情况而定)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-x9N3lNaq-1662096991375)(_v_images/20220831142605683_21256.png)]

coco_classes.names中修改:(根据自己模型标签情况而定)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Az12x4Fj-1662096991376)(_v_images/20220831142653699_30839.png)]

到此修改后处理操作完成,再次运行sh 04_inference.sh进行推理得到结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A1J8C5KH-1662096991377)(_v_images/20220831142234717_3222.png)]

在这里插入图片描述

这篇关于地平线X3pi基于YOLOv5-5.0版本程序上板运行推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/378840

相关文章

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代