基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片)

本文主要是介绍基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、彩色图像文件转为灰度文件
    • 1. 使用opencv
    • 2. 不使用opencv
  • 二、将彩色图像转为HSV、HSI格式
    • 1. 转HSV
    • 2. 转HSI
  • 三、车牌数字分割为单个的字符图片
    • 1.图片准备
    • 2. 代码实现
      • 1. 读取图片
      • 2. 图片预处理
    • 3. 输出结果
    • 4. 源码
  • 四、参考

一、彩色图像文件转为灰度文件

1. 使用opencv

代码:

import cv2 as cv
img = cv.imread('./pic/lena.png',1)
img_1 = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
cv.imshow('gray',img_1)
cv.imshow('colour',img)
cv.waitKey(0)

效果:
在这里插入图片描述

2. 不使用opencv

代码:

from PIL import Image
I = Image.open('./pic/lena.png')
L = I.convert('L')
L.show()

效果:
在这里插入图片描述

二、将彩色图像转为HSV、HSI格式

1. 转HSV

HSV 格式: H 代表色彩,S 代表颜色的深浅,V 代表着颜色的明暗程度。

HSV 颜色空间可以很好地把颜色信息和亮度信息分开,将它们放在不同的通道中,减小了光线对于特定颜色识别的影响。
在阴影检测算法中经常需要将RGB格式的图像转化为HSV格式,对于阴影区域而言,它的色度和饱和度相对于原图像而言变化不大,主要是亮度信息变化较大,,将RGB格式转化为HSV格式,就可以得到H、S、V分量,从而得到色度、饱和度、亮度得值;
代码:

import cv2 as cvimg = cv.imread('./pic/lena.png', 1)
cv.imshow('original image', img)
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
cv.imshow('HSV format image', hsv)
cv.waitKey(0)

效果:
在这里插入图片描述

2. 转HSI

HSL (色相hue, 饱和度saturation, 亮度lightness/luminance),
也称HLS 或 HSI (I指intensity)
与 HSV非常相似,仅用亮度(lightness)替代了明度(brightness)。
人的视觉对亮度的敏感程度远强于对颜色浓淡的敏感程度,为了便于颜色处理和识别,人的市局系统经常采用HSI彩色空间,它比RGB空间更符合人的视觉特性。此外,由于HSI空间中亮度和色度具有可分离性,使得图像处理和机器视觉中大量灰度处理算法都可在HSI空间方便进行
HSI颜色空间:
在这里插入图片描述
代码:

import cv2
import numpy as npdef rgbtohsi(rgb_lwpImg):rows = int(rgb_lwpImg.shape[0])cols = int(rgb_lwpImg.shape[1])b, g, r = cv2.split(rgb_lwpImg)# 归一化到[0,1]b = b / 255.0g = g / 255.0r = r / 255.0hsi_lwpImg = rgb_lwpImg.copy()H, S, I = cv2.split(hsi_lwpImg)for i in range(rows):for j in range(cols):num = 0.5 * ((r[i, j]-g[i, j])+(r[i, j]-b[i, j]))den = np.sqrt((r[i, j]-g[i, j])**2+(r[i, j]-b[i, j])*(g[i, j]-b[i, j]))theta = float(np.arccos(num/den))if den == 0:H = 0elif b[i, j] <= g[i, j]:H = thetaelse:H = 2*3.14169265 - thetamin_RGB = min(min(b[i, j], g[i, j]), r[i, j])sum = b[i, j]+g[i, j]+r[i, j]if sum == 0:S = 0else:S = 1 - 3*min_RGB/sumH = H/(2*3.14159265)I = sum/3.0# 输出HSI图像,扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间hsi_lwpImg[i, j, 0] = H*255hsi_lwpImg[i, j, 1] = S*255hsi_lwpImg[i, j, 2] = I*255return hsi_lwpImg
if __name__ == '__main__':rgb_lwpImg = cv2.imread("./pic/lena.png")hsi_lwpImg = rgbtohsi(rgb_lwpImg)cv2.imshow('lena.jpg', rgb_lwpImg)cv2.imshow('hsi_lwpImg', hsi_lwpImg)key = cv2.waitKey(0) & 0xFFif key == ord('q'):cv2.destroyAllWindows()

效果:
在这里插入图片描述

三、车牌数字分割为单个的字符图片

1.图片准备

在这里插入图片描述

2. 代码实现

1. 读取图片

file_path = "./pic/License/"
licenses = os.listdir(file_path)
for license in licenses:path = file_path+licenseoutput_path = "./pic/"+license # 图片输出路径# 如果该路径存在则删除if os.path.isdir(output_path):shutil.rmtree(output_path)# 创建文件夹os.mkdir(output_path)# 1.读取图片src = cv2.imread(path)img = src.copy()

2. 图片预处理

  • 去除车牌螺丝点
 # 去除车牌上螺丝,将其替换为车牌底色cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)
  • 图片灰度处理
# 3.灰度gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  • 高斯滤波
# 4.高斯滤波GSblurred = cv2.GaussianBlur(gray, (5, 5), 12) # 参数自行调节
  • 二值化
# 5.将灰度图二值化设定阈值ret, thresh = cv2.threshold(GSblurred , 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)print("ret",ret)
  • 闭运算
# 6. 闭运算kernel = np.ones((3, 3), int)closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=2)
  • 分割字符
# 7.分割字符white = [] # 记录每一列的白色像素总和black = [] # ..........黑色.......height = thresh.shape[0]width = thresh.shape[1]white_max = 0black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0 # 这一列白色总数t = 0 # 这一列黑色总数for j in range(height):if thresh[j][i] == 255:s += 1if thresh[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)
  • 分割图像
arg = False  # False表示白底黑字;True表示黑底白字if black_max > white_max:arg = True# 分割图像def find_end(start_):end_ = start_ + 1for m in range(start_ + 1, width - 1):if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max):  # 0.95这个参数请多调整,对应下面的0.05end_ = mbreakreturn end_n = 1start = 1end = 2i=0;cj=[]while n < width - 2:n += 1if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max):# 上面这些判断用来辨别是白底黑字还是黑底白字# 0.05这个参数请多调整,对应上面的0.95start = nend = find_end(start)n = endif end - start > 5:cj.append(thresh[1:height, start:end])cv2.imwrite(output_path + '/' + str(i) + '.jpg', cj[i])i = i + 1;

3. 输出结果

在这里插入图片描述
部分展示
在这里插入图片描述

4. 源码

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""项目主题:车牌检测将车牌数字分割为单个的字符图片
"""
import os
import shutilimport cv2
import numpy as npfile_path = "./pic/License/"
licenses = os.listdir(file_path)
for license in licenses:path = file_path+licenseoutput_path = "./pic/"+license# 如果该路径存在则删除if os.path.isdir(output_path):shutil.rmtree(output_path)# 创建文件夹os.mkdir(output_path)# 1.读取图片src = cv2.imread(path)img = src.copy()# 2.去除车牌上螺丝,将其替换为车牌底色cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)# 3.灰度gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 4.高斯滤波GSblurred = cv2.GaussianBlur(gray, (5, 5), 12)# 5.将灰度图二值化设定阈值ret, thresh = cv2.threshold(GSblurred , 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)print("ret",ret)# 6. 闭运算kernel = np.ones((3, 3), int)closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=2)二值化ret, thresh = cv2.threshold(closed, 127, 255, cv2.THRESH_BINARY+ cv2.THRESH_OTSU)# 7.分割字符white = [] # 记录每一列的白色像素总和black = [] # ..........黑色.......height = thresh.shape[0]width = thresh.shape[1]white_max = 0black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0 # 这一列白色总数t = 0 # 这一列黑色总数for j in range(height):if thresh[j][i] == 255:s += 1if thresh[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)# print(s)# print(t)arg = False  # False表示白底黑字;True表示黑底白字if black_max > white_max:arg = True# 分割图像def find_end(start_):end_ = start_ + 1for m in range(start_ + 1, width - 1):if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max):  # 0.95这个参数请多调整,对应下面的0.05end_ = mbreakreturn end_n = 1start = 1end = 2i=0;cj=[]while n < width - 2:n += 1if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max):# 上面这些判断用来辨别是白底黑字还是黑底白字# 0.05这个参数请多调整,对应上面的0.95start = nend = find_end(start)n = endif end - start > 5:cj.append(thresh[1:height, start:end])cv2.imwrite(output_path + '/' + str(i) + '.jpg', cj[i])i += 1;

四、参考

https://www.cnblogs.com/datou-swag/articles/10672207.html
https://blog.csdn.net/qq_47281915/article/details/121705585

这篇关于基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377706

相关文章

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W