布隆过滤器(Bloom Filter)及CBF 使用及原理浅析

2023-11-09 17:20

本文主要是介绍布隆过滤器(Bloom Filter)及CBF 使用及原理浅析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

布隆过滤器 原理:

步骤1:在内存中开辟一块连续的空间;将所有bit位置为0; 假如 设置 3个hash函数 将 数据 分别存储在3个bit位上;

步骤2:在有数据(如 'baidu')需要存储时, 将 数据 经过 3个hash函数的计算 得到 3个 bit位置; 然后将对应3个bit位置 数据置位1;

下次判断 数据(如'baidu') 是否存在时,将数据 通过 步骤2 计算后 获取对应bit位置 数据是否 都为1(注意 因为3个hash函数相同,所以相同数据 无论计算多少次 对应bit位置都一样,保证准确性) 即可判断数据是否重复;

 

作用:

黑名单,缓存穿透 等等 需要判断在大量数据基础上某条数据是否存在时使用;

特点:

1.有一定的判断错误概率;因为 2个 数据 通过 hash计算后可能会 落到相同的bit位上;

2.不支持删除操作;在实际项目中,如 黑名单 可能存在 今天将用户拉入黑名单,明天拉出黑名单的操作;这时 使用布隆过滤器 无法完成此种业务;因为 每个bit为可能关联多个数据(牵一发而动全身); 这时可以考虑使用 Count Boolm Filter 解决此问题;

 

问题: 判断数据是否存在或者重复?

方案一: 在内存中 存入所有数据,然后 将被比较数据 和 所有数据进行一一比对;   缺点:数据存储耗费内存多; 比较 效率最差为o(n);

方案二: 在内存中 将所有数据 通过 处理后 直接存储 数据是否存在的状态; 然后 将被比较数据 通过处理后 查看状态 是否为 存在或者不存在即可;  这种方式就是 布隆过滤器; 优点在于 在 海量数据时,因为存储的是 数据是否存在的状态;而不是 海量数据;  优点:存储利用率较高; 比较 效率基本为o(1);   缺点: 存在一定概率 比较失败(误判数据存在);

 

布隆过滤器计算器

布隆过滤器 根据数据条数,错误率 判断内存使用情况和hash函数个数 的 计算器如下: https://krisives.github.io/bloom-calculator/

 

总结:

由于布隆过滤器 实现特点;所以 要想误判率越低,则需要 越多的内存及 越多的 hash函数; 但是过多的hash函数会造成 时间及资源上 的损耗; 所以 需要根据实际需求 设置合理的 误判率;

可以通过 上面的 布隆过滤器计算器  快捷计算出需要的 内存空间等数据;

 

延伸:

解决 布隆过滤器无法 删除数据的问题 可以通过 Count Boolm Filter(CBF) 这种计数布隆过滤器实现;

其实CBF 思路 就是 在将 每个bit位 置为1 的次数 进行计数;  从而达到 删除数据时 则对应bit位 计数减一; 增加数据时 对应bit为 计数加一;

CBF是一种解决无法删除问题的 思路(注意 CBF和SBF,DCF的关系); 具体实现方式分为如下2种:

SBF(Spectral Bloom Filter): 引用原文如下:  将所有counter排成一个位串,counter之间完全不留空隙,然后通过建立索引结构来访问counter,并达到了只使用O(N) + O(m)位的存储目标,O(m)的构建时间。虽然SBF解决了动态counter的存储问题,但其引入了复杂的索引结构,这让每个counter的访问变得复杂而耗时

DCF(Dynamic Count Filter): 其实就是 将 bit位 存的 count值 分别放在 2个列表中; 一个列表 每个数据的 最大值固定(也就是bit位的个数固定); 另一个列表 每个数据 最大值不固定(bit为个数不固定); 2个列表 对应数据 相加 就是 count的值; 存数据时 优先存在固定长度的列表中,存不下再放在 不固定列表中;

这样 最大程度上 可以动态的 调整内存空间;从而更加有效率的利用内存空间;

 

具体区别及特点如下链接:https://blog.csdn.net/vipshop_fin_dev/article/details/102647115

注意: 由于 CBF 是基于 布隆过滤器 的 基础上进行的变种;所以 布隆过滤器的缺点 这些变种算法同样存在

 

相关链接:

python及redis 实现 布隆过滤器方法及解决缓存穿透问题: https://www.cnblogs.com/yscl/p/12003359.html#3346833348

散列技术: https://www.jianshu.com/p/7f9d74b34e76

这篇关于布隆过滤器(Bloom Filter)及CBF 使用及原理浅析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377515

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(