【Hadoop】8.MapReduce框架原理-MapTask和ReduceTask的工作机制

2023-11-09 13:32

本文主要是介绍【Hadoop】8.MapReduce框架原理-MapTask和ReduceTask的工作机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MapTask工作机制

MapTask工作机制一共分为:Read阶段,Map阶段,Collect阶段,溢写阶段,Combine阶段
ps: 来自尚学堂ppt
在这里插入图片描述

  1. Read阶段: MapTask通过用户编写的ReacordReader,从输入Insplit中解析出一个个key/value。
  2. Map阶段: 该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value
  3. Collect收集阶段: 在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它将会生成key/value分区(调用Patittioner),并写入一个环形内存缓冲区
  4. Spill阶段: 即溢写阶段,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要将数据进行一次本地排序(快速排序),并在必要时对数据进行压缩,合并等操作
  5. Combine阶段: 当所有数据处理完成后,MapTask对所有临时文件进行一次合并(归并合并),以确保最终只会生成 一个数据。

当所有的数据处理完,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。

当进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。

让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

Spill阶段详情:

  1. 利用快速排序算法对缓存区内的数据进行排序,排序方式为先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集一起,且同一个分区所有数据按照key有序。
  2. 按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果 用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
  3. 将分区数据的元信息写到内存索引数据结构SplillRecord中,其中每个分区的元信息包括在临时文件中的偏移量,压缩前数据大小和压缩后的数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

ReduceTask的工作机制

ReduceTask工作机制分为:Copy阶段,Merge阶段,Sort阶段,Reduce阶段。

在这里插入图片描述

  1. Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
  2. Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
  3. Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
  4. Reduce阶段:reduce()函数将计算结果写到HDFS上。
设置ReduceTask并行度

MapTask并行度由切片决定,ReduceTask并行度可以直接指定个数
job.setNumReduceTasks(4);

注意事项:
在这里插入图片描述

这篇关于【Hadoop】8.MapReduce框架原理-MapTask和ReduceTask的工作机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376424

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase