阿里又在搞事,推出跨库高效数据同步神器,操作简单又牛X!

2023-11-09 12:59

本文主要是介绍阿里又在搞事,推出跨库高效数据同步神器,操作简单又牛X!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有个项目的数据量高达五千万,但是因为报表那块数据不太准确,业务库和报表库又是跨库操作,所以并不能使用 SQL 来进行同步。当时的打算是通过 mysqldump 或者存储的方式来进行同步,但是尝试后发现这些方案都不切实际:

mysqldump:不仅备份需要时间,同步也需要时间,而且在备份的过程,可能还会有数据产出(也就是说同步等于没同步)

存储方式:这个效率太慢了,要是数据量少还好,我们使用这个方式的时候,三个小时才同步两千条数据…

常见数据异构的几款中间件的区别如下:

ae066d97e87d0b7b1f319c93fb75e2f0.jpeg

今天介绍一款不错的中间件:DataX

DataX 简介

DataX 是阿里云 DataWorks 数据集成 的开源版本,主要就是用于实现数据间的离线同步。 DataX 致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等 各种异构数据源(即不同的数据库) 间稳定高效的数据同步功能。

fdd0b067746b912839cae0253b456de7.png为了 解决异构数据源同步问题,DataX 将复杂的网状同步链路变成了星型数据链路 ,DataX 作为中间传输载体负责连接各种数据源;

  • 当需要接入一个新的数据源时,只需要将此数据源对接到 DataX,便能跟已有的数据源作为无缝数据同步。

DataX3.0 框架设计

DataX 采用 Framework + Plugin 架构,将数据源读取和写入抽象称为 Reader/Writer 插件,纳入到整个同步框架中。

5446a357fd0492d5d584b8f90173cf49.png
角色作用
Reader(采集模块)负责采集数据源的数据,将数据发送给 Framework
Writer(写入模块)负责不断向 Framework 中取数据,并将数据写入到目的端。
Framework(中间商)负责连接 Reader 和 Writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

DataX3.0 核心架构

DataX 完成单个数据同步的作业,我们称为 Job,DataX 接收到一个 Job 后,将启动一个进程来完成整个作业同步过程。关注公众号:码猿技术专栏,回复关键词:1111 获取阿里内部Java性能调优手册!DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分、TaskGroup 管理等功能。

c46342957813305f343d913f4a86bb27.png
  • DataX Job 启动后,会根据不同源端的切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。

  • 接着 DataX Job 会调用 Scheduler 模块,根据配置的并发数量,将拆分成的 Task 重新组合,组装成 TaskGroup(任务组)

  • 每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader --> Channel --> Writer 线程来完成任务同步工作。

  • DataX 作业运行启动后,Job 会对 TaskGroup 进行监控操作,等待所有 TaskGroup 完成后,Job 便会成功退出(异常退出时 值非 0 )

DataX 调度过程:

  1. 首先 DataX Job 模块会根据分库分表切分成若干个 Task,然后根据用户配置并发数,来计算需要分配多少个 TaskGroup;

  2. 计算过程:Task / Channel = TaskGroup,最后由 TaskGroup 根据分配好的并发数来运行 Task(任务)

使用 DataX 实现数据同步

准备工作:

  • JDK(1.8 以上,推荐 1.8)

  • Python(2,3 版本都可以)

  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)

主机名操作系统IP 地址软件包
MySQL-1CentOS 7.4192.168.1.1jdk-8u181-linux-x64.tar.gz datax.tar.gz
MySQL-2CentOS 7.4192.168.1.2

安装 JDK:

下载地址:https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html(需要创建 Oracle 账号)

[root@MySQL-1 ~]# ls
anaconda-ks.cfg  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz 
[root@DataX ~]# ls
anaconda-ks.cfg  jdk1.8.0_181  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java
[root@MySQL-1 ~]# cat <<END >> /etc/profile
export JAVA_HOME=/usr/local/java
export PATH=$PATH:"$JAVA_HOME/bin"
END
[root@MySQL-1 ~]# source /etc/profile
[root@MySQL-1 ~]# java -version
  • 因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

Linux 上安装 DataX 软件

[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/
[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*      # 需要删除隐藏文件 (重要)
  • 当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.

验证:

[root@MySQL-1 ~]# cd /usr/local/datax/bin
[root@MySQL-1 ~]# python datax.py ../job/job.json       # 用来验证是否安装成功

输出:

2021-12-13 19:26:28.828 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-13 19:26:28.829 [job-0] INFO  StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.060s |  All Task WaitReaderTime 0.068s | Percentage 100.00%
2021-12-13 19:26:28.829 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-13 19:26:18
任务结束时刻                    : 2021-12-13 19:26:28
任务总计耗时                    :                 10s
任务平均流量                    :          253.91KB/s
记录写入速度                    :          10000rec/s
读出记录总数                    :              100000
读写失败总数                    :                   0

DataX 基本使用

查看 streamreader \--> streamwriter 的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter

输出:

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.Please refer to the streamreader document:https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md Please refer to the streamwriter document:https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md Please save the following configuration as a json file and  usepython {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [], "sliceRecordCount": ""}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "", "print": true}}}], "setting": {"speed": {"channel": ""}}}
}

根据模板编写 json 文件

[root@MySQL-1 ~]# cat <<END > test.json
{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [        # 同步的列名 (* 表示所有){"type":"string","value":"Hello."},{"type":"string","value":"河北彭于晏"},], "sliceRecordCount": "3"     # 打印数量}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "utf-8",     # 编码"print": true}}}], "setting": {"speed": {"channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)}}}
}

输出:(要是复制我上面的话,需要把 # 带的内容去掉)

0d66a0ae477f4143fcd41e9690823e5d.png

安装 MySQL 数据库

分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb            # 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation            # 初始化 
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDBSERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!Enter current password for root (enter for none):       # 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                            # 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..... Success!
Remove anonymous users? [Y/n] y                     # 移除匿名用户... skipping.
Disallow root login remotely? [Y/n] n                # 允许 root 远程登录... skipping.
Remove test database and access to it? [Y/n] y         # 移除测试数据库... skipping.
Reload privilege tables now? [Y/n] y                    # 重新加载表... Success!

1)准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)
bdd3660206402993944a9472fa7cad08.png

因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;

2)创建存储过程:

DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;
9352919e3f5a386684f08949da57bc8d.png
图片

3)调用存储过程(在数据源配置,验证同步使用):

call test();

通过 DataX 实 MySQL 数据同步

1)生成 MySQL 到 MySQL 同步的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{"job": {"content": [{"reader": {"name": "mysqlreader",       # 读取端"parameter": {"column": [],         # 需要同步的列 (* 表示所有的列)"connection": [{"jdbcUrl": [],       # 连接信息"table": []       # 连接表}], "password": "",        # 连接用户"username": "",        # 连接密码"where": ""         # 描述筛选条件}}, "writer": {"name": "mysqlwriter",       # 写入端"parameter": {"column": [],         # 需要同步的列"connection": [{"jdbcUrl": "",       # 连接信息"table": []       # 连接表}], "password": "",        # 连接密码"preSql": [],         # 同步前. 要做的事"session": [], "username": "",        # 连接用户 "writeMode": ""        # 操作类型}}}], "setting": {"speed": {"channel": ""          # 指定并发数}}}
}

2)编写 json 文件:

[root@MySQL-1 ~]# vim install.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}

3)验证

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json

输出:

2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0

你们可以在目的数据库进行查看,是否同步完成。

a632e53f9649a5c0fe0d21100d1257a4.png
  • 上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;

  • 所以在有些情况下,增量同步还是蛮重要的。

使用 DataX 进行增量同步

使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选。 关注公众号:码猿技术专栏,回复关键词:1111 获取阿里内部Java性能调优手册!(即,同步筛选后的 SQL)

1)编写 json 文件:

[root@MySQL-1 ~]# vim where.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","where": "ID <= 1888","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
  • 需要注意的部分就是:where(条件筛选) 和 preSql(同步前,要做的事) 参数。

2)验证:

[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json

输出:

2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0

目标数据库上查看:

837f406aba452f2f520ef873255c5f3e.png

3)基于上面数据,再次进行增量同步:

主要是 where 配置:"where": "ID > 1888 AND ID <= 2888"      # 通过条件筛选来进行增量同步
同时需要将我上面的 preSql 删除(因为我上面做的操作时 truncate 表)
c0c17202047616686fb79d393bab6f9f.png

来源:一行java(id:mbb2048)

这篇关于阿里又在搞事,推出跨库高效数据同步神器,操作简单又牛X!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376246

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实