支持向量机smo算法C语言,SVM支持向量机(四)R语言实现、SMO算法

2023-11-09 11:30

本文主要是介绍支持向量机smo算法C语言,SVM支持向量机(四)R语言实现、SMO算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、求解支持向量机。

上篇笔记讲到,如何求解拉格朗日乘子向量。基本的想法就是,每次选出两个乘子,对其他的乘子赋值,此时,只剩两个乘子。问题变成了一个两元一次方程和求二元函数最小值的问题。如果乘子可以更新(既违反了KKT条件),则把其中一个乘子用令一个乘子代替,带入到二元函数中,再求函数取最小值时(通过公式可以看出这是一个开口向上的抛物线),未知数的值。重复上面的过程直到所有的乘子都稳定下来,不再发生变化。此时问题求解成功。

记要更新的乘子为ai,aj,aj的更新过程如下

0818b9ca8b590ca3270a3433284dd417.png

其中E1,E2是我们分类的预测值和实际值的差,既wx+b - y 。

0818b9ca8b590ca3270a3433284dd417.png

K为核函数。 aj每次更新时等于更新前的值加上y2(E1-E2)/n ,这个公式实际上就是上面说的,对开口向上的抛物线求导,令导数等于0求得的解。不过这个公式不太好推导,下面参考的博客里有详细的推导过程。这种写法同时体现了坐标下降的思路,和梯度下降有点像,但梯度下降每次向梯度方向下降固定的步长,而坐标下降一次性达到局部最优的位置。但是,a2new只是抛物线顶点,还不是真正的解。因为还有限制条件,将限制条件画到图上,就是一个正方形,而ai,aj的关系是一条直线,直线截距可正可负,所以要分情况看。如果根据抛物线导数求解的a2new没有落在平行线上和正方形内时,应取直线与正方形的边界值。根据aj,ai的符号是否相同,限制条件的边界值也有所不同:

0818b9ca8b590ca3270a3433284dd417.pngai,aj异号

0818b9ca8b590ca3270a3433284dd417.pngai,aj同号

0818b9ca8b590ca3270a3433284dd417.png

根据上面的公式,每次可以更新一个乘子,由于两个乘子是线性关系,所以另外一个乘子往相反的方向更新即可。由于更新乘子的过程中,使用到了b,所以每次更新完,还得把b也更新一下。b的更新公式为

0818b9ca8b590ca3270a3433284dd417.png

0818b9ca8b590ca3270a3433284dd417.png

当某个乘子a满足 0 < a < C 时,这个乘子所对应的样本就是支持向量,因此有wx+b=1或者wx+b=-1, 因为w可以由乘子计算出来,后面的正负一就是样本的分类,所以,b可以求出来,推导之后b的计算方式也可以写成上面的更新公式。如果两个乘子都不满足0 < a < C ,也就是说两个样本点都不是支持向量,此时,b不能精确到底是多少,但可以肯定在b1和b2之间,这里一般写成两者平均数。

0818b9ca8b590ca3270a3433284dd417.png

上面的公式展示了每一次是如何更新一对乘子,并更新b的。

在简单求解的过程中,可以随机选取一些乘子来更新。如果随机选取到的乘子都不需要再更新,既所有的乘子都满足KKT条件,当这样的情况发生到一定次数时,停止迭代,求解完成。

下面我们用R语言实现上面算法,测试数据集为《机器学习实战》第6章的简单算法测试数据。原始数据集图:

0818b9ca8b590ca3270a3433284dd417.png

使用如下代码,运行后,画出分隔平面

src 

names(src) 

#作原始数据图像

library(ggplot2)

qplot(x,y,data=src,geom="point",xlab="x",ylab="y",color=label,position="jitter")

#挑选一个随机数,当选择ai后,随机选取一个aj

selectRandom 

while(j == i){

}

return(j)

}

#选择下一个拉格朗日乘子,如果顶点在限制条件外,应取边界点

nextAlpha 

#cat("aj,H,L is ",aj,H,L,"\n")

if(aj > H){

aj 

}

if(aj 

aj 

}

return(aj)

}

#定义一个核函数,为方便,先实现内积

kernel 

if(type == "linear"){

return(sum(vector1*vector2))

}

}

#创建核矩阵,避免重复计算

createKernelMatrix 

km 

for(i in 1:n){

for(j in i:n){

value 

km[i,j] 

km[j,i] 

}

}

return(km)

}

#简单支持向量机算法

simpleSVM 

#初始化数据

dataSet 

label 

aSet 

kernelMatrix 

#开始迭代

iter 

while( iter 

changedCount 

for(i in 1:length(label)){

x1 

x2 

E1 

#是否可以优化? 违反了KKT条件的都可以优化

if(((E1*label[i]  miss) && (aSet[i] > 0))){

E2 

if(label[i]*label[j] > 0){

}else{

}

if(L==H){

cat("L=H continue \n")

next

}

nita 

if(nita == 0){

cat("nita is 0 \n")

next

}

newAj 

oldAj 

aSet[j] 

oldAi 

aSet[i] 

#开始更新b

if(aSet[i] > 0 && aSet[i] 

label[j]*(aSet[j]-oldAj)*kernelMatrix[i,j]

}else{

if(aSet[j] > 0 && aSet[j] 

label[j]*(aSet[j]-oldAj)*kernelMatrix[j,j]

}else{

b1 

label[j]*(aSet[j]-oldAj)*kernelMatrix[i,j]

b2 

label[j]*(aSet[j]-oldAj)*kernelMatrix[j,j]

}

}

changedCount 

}

}

if(changedCount == 0){

iter 

}else{

iter 

}

}

temp 

w1 

w2 

return(list("w"=w,"b"=b,"a"=aSet))

}

model 

src$calY 

p

0818b9ca8b590ca3270a3433284dd417.png

感觉还行,不过代码里很多地方写死了,只能用于2维数据,为了不写的太复杂,自己都搞不清,就这样了。

二、SMO算法

在上面的实现中,我们顺序选取ai然后随机选取aj。这个过程浪费了非常多计算量。从经验来看,绝大多数的样本点都不是支持向量,当优化到该样本时,乘子会变成0。而乘子变成0或C之后基本不会再发生变化,反而那些优化后仍然处于0和C之间的乘子,往往需要不断的优化。SMO算法遵循“启发式”选择方法,既优先优化那些可以一次性优化到位的乘子。然后再优化其他的乘子。SMO通过两层循环来挑选要优化的乘子。

SMO称选择第一个变量的过程为外层循环。外层训练在训练样本中选取违法KKT条件最严重的样本点。并将其对应的变量作为第一个变量。 该检验是在ε范围内进行的。在检验过程中,外层循环首先遍历所有满足条件0

优先选择遍历非边界数据样本,因为非边界数据样本更有可能需要调整,边界数据样本常常不能得到进一步调整而留在边界上。由于大部分数据样本都很明显不可能是支持向量,因此对应的α乘子一旦取得零值就无需再调整。遍历非边界数据样本并选出他们当中违反KKT 条件为止。当某一次遍历发现没有非边界数据样本得到调整时,遍历所有数据样本,以检验是否整个集合都满足KKT条件。如果整个集合的检验中又有数据样本被 进一步进化,则有必要再遍历非边界数据样本。这样,不停地在遍历所有数据样本和遍历非边界数据样本之间切换,直到整个样本集合都满足KKT条件为止。以上 用KKT条件对数据样本所做的检验都以达到一定精度ε就可以停止为条件。如果要求十分精确的输出算法,则往往不能很快收敛。

对整个数据集的遍历扫描相当容易,而实现对非边界αi的扫描时,首先需要将所有非边界样本的αi值(也就是满足0

在选择第一个αi后,算法会通过一个内循环来选择第二个αj值。因为第二个乘子的迭代步长大致正比于|Ei-Ej|,所以我们需要选择能够最大化|Ei-Ej|的第二个乘子(选择最大化迭代步长的第二个乘子)。在这里,为了节省计算时间,我们建立一个全局的缓存用于保存所有样本的误差值,而不用每次选择的时候就重新计算。我们从中选择使得步长最大或者|Ei-Ej|最大的αj。

后期实现。

这篇关于支持向量机smo算法C语言,SVM支持向量机(四)R语言实现、SMO算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375833

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali