本文主要是介绍数组复制之System.arraycopy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
为了测试俩者的区别我写了一个简单赋值int[100000]的程序来对比,并且中间使用了nanoTime来计算时间差:
程序如下:
int[] a = new int[100000];for(int i=0;i<a.length;i++){a[i] = i;}int[] b = new int[100000];int[] c = new int[100000];for(int i=0;i<c.length;i++){c[i] = i;}int[] d = new int[100000];for(int k=0;k<10;k++){long start1 = System.nanoTime();for(int i=0;i<a.length;i++){b[i] = a[i];}long end1 = System.nanoTime();System.out.println("end1 - start1 = "+(end1-start1));long start2 = System.nanoTime();System.arraycopy(c, 0, d, 0, 100000);long end2 = System.nanoTime();System.out.println("end2 - start2 = "+(end2-start2));System.out.println();}
为了避免内存不稳定干扰和运行的偶然性结果,我在一开始的时候把所有空间申明完成,并且只之后循环10次执行,得到如下结果:
end1 - start1 = 366806
end2 - start2 = 109154end1 - start1 = 380529
end2 - start2 = 79849end1 - start1 = 421422
end2 - start2 = 68769end1 - start1 = 344463
end2 - start2 = 72020end1 - start1 = 333174
end2 - start2 = 77277end1 - start1 = 377335
end2 - start2 = 82285end1 - start1 = 370608
end2 - start2 = 66937end1 - start1 = 349067
end2 - start2 = 86532end1 - start1 = 389974
end2 - start2 = 83362end1 - start1 = 347937
end2 - start2 = 63638
可以看出,System.arraycopy的性能很不错,为了看看究竟这个底层是如何处理的,我找到openJDK的一些代码留恋了一些:
System.arraycopy是一个native函数,需要看native层的代码:
public static native void arraycopy(Object src, int srcPos,Object dest, int destPos,int length);
找到对应的openjdk6-src/hotspot/src/share/vm/prims/jvm.cpp,这里有JVM_ArrayCopy的入口:
JVM_ENTRY(void, JVM_ArrayCopy(JNIEnv *env, jclass ignored, jobject src, jint src_pos,jobject dst, jint dst_pos, jint length))JVMWrapper("JVM_ArrayCopy");// Check if we have null pointersif (src == NULL || dst == NULL) {THROW(vmSymbols::java_lang_NullPointerException());}arrayOop s = arrayOop(JNIHandles::resolve_non_null(src));arrayOop d = arrayOop(JNIHandles::resolve_non_null(dst));assert(s->is_oop(), "JVM_ArrayCopy: src not an oop");assert(d->is_oop(), "JVM_ArrayCopy: dst not an oop");// Do copyKlass::cast(s->klass())->copy_array(s, src_pos, d, dst_pos, length, thread);
JVM_END
前面的语句都是判断,知道最后的copy_array(s, src_pos, d, dst_pos, length, thread)是真正的copy,进一步看这里,在openjdk6-src/hotspot/src/share/vm/oops/typeArrayKlass.cpp中:
void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {assert(s->is_typeArray(), "must be type array");// Check destinationif (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {THROW(vmSymbols::java_lang_ArrayStoreException());}// Check is all offsets and lengths are non negativeif (src_pos < 0 || dst_pos < 0 || length < 0) {THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());}// Check if the ranges are validif ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())|| (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());}// Check zero copyif (length == 0)return;// This is an attempt to make the copy_array fast.int l2es = log2_element_size();int ihs = array_header_in_bytes() / wordSize;char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);//还是在这里处理copy
}
这个函数之前的仍然是一堆判断,直到最后一句才是真实的拷贝语句。
在openjdk6-src/hotspot/src/share/vm/utilities/copy.cpp中找到对应的函数:
// Copy bytes; larger units are filled atomically if everything is aligned.
void Copy::conjoint_memory_atomic(void* from, void* to, size_t size) {address src = (address) from;address dst = (address) to;uintptr_t bits = (uintptr_t) src | (uintptr_t) dst | (uintptr_t) size;// (Note: We could improve performance by ignoring the low bits of size,// and putting a short cleanup loop after each bulk copy loop.// There are plenty of other ways to make this faster also,// and it's a slippery slope. For now, let's keep this code simple// since the simplicity helps clarify the atomicity semantics of// this operation. There are also CPU-specific assembly versions// which may or may not want to include such optimizations.)if (bits % sizeof(jlong) == 0) {Copy::conjoint_jlongs_atomic((jlong*) src, (jlong*) dst, size / sizeof(jlong));} else if (bits % sizeof(jint) == 0) {Copy::conjoint_jints_atomic((jint*) src, (jint*) dst, size / sizeof(jint));} else if (bits % sizeof(jshort) == 0) {Copy::conjoint_jshorts_atomic((jshort*) src, (jshort*) dst, size / sizeof(jshort));} else {// Not aligned, so no need to be atomic.Copy::conjoint_jbytes((void*) src, (void*) dst, size);}
}
上面的代码展示了选择哪个copy函数,我们选择conjoint_jints_atomic,在openjdk6-src/hotspot/src/share/vm/utilities/copy.hpp进一步查看:
// jints, conjoint, atomic on each jintstatic void conjoint_jints_atomic(jint* from, jint* to, size_t count) {assert_params_ok(from, to, LogBytesPerInt);pd_conjoint_jints_atomic(from, to, count);}
继续向下查看,在openjdk6-src/hotspot/src/cpu/zero/vm/copy_zero.hpp中:
static void pd_conjoint_jints_atomic(jint* from, jint* to, size_t count) {_Copy_conjoint_jints_atomic(from, to, count);
}
继续向下查看,在openjdk6-src/hotspot/src/os_cpu/linux_zero/vm/os_linux_zero.cpp中:
void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {if (from > to) {jint *end = from + count;while (from < end)*(to++) = *(from++);}else if (from < to) {jint *end = from;from += count - 1;to += count - 1;while (from >= end)*(to--) = *(from--);}}
可以看到,直接就是内存块赋值的逻辑了,这样避免很多引用来回倒腾的时间,必然就变快了。
这篇关于数组复制之System.arraycopy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!