遥感变化检测数据集

2023-11-09 00:30
文章标签 数据 遥感 变化检测

本文主要是介绍遥感变化检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感变化检测数据集

遥感变化检测任务是利用多时相的遥感数据,采用多种图像处理和模式识别方法提取变化信息,并定量分析和确定地表变化的特征与过程。它涉及变化的类型、分布状况与变化量,即需要确定变化前、后的地面类型、界线、及变化趋势,进而分析这些动态变化的特点与原因。

遥感变化检测的影响因素

  • 遥感系统因素的影响(时间、空间、光谱、辐射分辨率):不同遥感系统的时间、空间、光谱和辐射分辨率不同。在变化检测前,一方面需要对检测区域内的主要问题进行调查,充分认识被检测对象的空间分布特征、波谱反射率与辐射特征及时相变化特征;另一方面需要充分了解遥感数据本身的特征,并将两者联系起来,以选择合适的遥感数据源。这是变化检测能否成功的前提。
  • 环境因素的影响(大气、土壤湿度状况、物候特征):用于变化检测的遥感图像应尽量无云或没有很浓的水汽。若用于变化检测 的不同日期的遥感图像的大气状况存在明显的差异,且难以找到可替代的数据,则需要应用大气辐射传输模型进行处理,以消除图像上大气衰减的影响。
  • 土壤湿度条件对地物的反射特征有很大的影响。在一些变化检测中,不仅需要检测图像获取时的土壤湿度,还需要检测前几天或前几周的雨量记录,以确定土壤湿度变化对光谱特性的影响。如果研究区内仅某些地段的土壤湿度差异明显,则需要对这些地段进行土壤的分层分类处理。

地球上的任何对象都存在时相变化,不管是自然生态系统还是人文现象,只是变化的的速度和过程有所不同。且不同时相的植物光谱特征会有所变化。因此,只有通过对地面对象的物候变化特征的理解,选择目标变化最大对应的时间段,才有可能选择合适时间的遥感数据,并从中获取丰富的变化信息。

01 MtS-WH数据集

Multi-temp Scene Wuhan(MtS-WH) 数据集主要用于进行场景变化检测的方法理论研究与验证。场景变化检测就是在场景语义的层次上,对一定范围区域的土地利用属性变化情况进行检测和分析。

本数据集主要包括两张由IKONOS传感器获得的VHR图像,大小为7200 x 6000的大尺寸高分辨率遥感影像。覆盖范围为中国武汉市汉阳区。影像分别获取于2002年2月和2009年6月,经过GS算法融合,分辨率为1m,包含4个波段(蓝,绿,红和近红外波段)。

整个数据集的训练样本和测试样本都是在大尺度高分辨率遥感影像中选取产生的。每个时相训练集包括190张影像,测试集包括1920张影像。训练集和测试集的场景图片共划分为以下几个类别:

数据集下载地址:

http://sigma.whu.edu.cn/newspage.php?q=2019_03_26

论文地址:

https://ieeexplore.ieee.org/document/7817860

02 SZTAKI AirChange Benchmark set

SZTAKI AirChange Benchmark set,该基准集包含13对航空影像,尺寸为952x640,分辨率为1.5m/pixel,以及binary change masks(手工绘制)。每个记录都包含一对初步配准的输入图像和change mask。在生成change mask时,数据集将以下差异视为相关更改:(a)新建城区(b)建筑施工(c)种植大批树木(d)新的耕地(e)重建前的基础工作。请注意,ground truth不包含变化分类,仅为每个像素标注 变化/不变化 标签。这是最常用的数据集之一。

数据集下载地址:

http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html

论文地址:

https://ieeexplore.ieee.org/document/5169964

03 AICD数据集

该数据集包含1000对800×600大小的图像及其对应的像素级变化标记,图像的地面分辨率约为0.5m。数据集包含100个不同的场景,包含树木、建筑物等对象。此外,为了分析视点差异对检测性能的影响,每个场景分别从五个不同的视点进行拍摄。下图展示了视点的设置,摄像机在高度约为250米,半径为100m的范围内,以10°为间隔,固定倾角约为-70度进行五个视点的拍摄。

数据集下载地址:

https://computervisiononline.com/dataset/1105138664

论文地址:

https://ieeexplore.ieee.org/document/6050150

04 Synthetic and real season-varying RS images

该数据集有三种类型:合成图像(无物体相对移位)、物体相对移位小的合成图像、真实季节变化遥感图像(由谷歌地球获得)。真正的季节变化遥感图像有 16000 个图像集,图像大小为 256x256 像素(10000 个列车集和 3000 个测试和验证集),空间分辨率为 3 到 100 cm/px。

数据集下载地址:

https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9/edit

论文地址:

https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/565/2018/isprs-archives-XLII-2-565-2018.pdf

05 HRSCD数据集

此数据集包含来自 IGS 的BD ORTHO 数据库中, 291 个 RGB 航空图像对。像素级变化和土地覆盖注释,由2006年城市地图集、2012年城市地图集和城市地图集2006-2012地图绘制生成。

数据集下载地址:

https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset

论文地址:

https://www.sciencedirect.com/science/article/abs/pii/S1077314219300992

06 LEVIR-CD 数据集

数据集 LEVIR-CD 由 637 个高分辨率(VHR,0.5m/px)的 Google 地球图像对组成,大小为 1024 × 1024 像素。这些时间跨度为5至14年,图像对土地利用有显著变化,尤其是建筑增加。LEVIR-CD 涵盖各种类型的建筑,如别墅住宅、高大公寓、小型车库和大型仓库。LjiEVIR-CD 总共包含 31,333 个单独的变化的实例。

数据集下载链接:

https://justchenhao.github.io/LEVIR/

论文地址:

https://www.sciencedirect.com/science/article/abs/pii/S1077314219300992

07 Google 数据集

该数据集是在2006年至2019年之间拍摄的,覆盖了中国广州市的郊区。为了便于生成图像对,通过 BIGEMAP 软件,Google 地球服务采用了 19 个季节变化的 VHR 图像对,其中红色、绿色和蓝色三个波段,空间分辨率为 0.55 米,大小从 1006×1168 像素到 4936×5224 像素不等。侧重于建筑物。

数据集下载地址:

https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery

论文地址:

https://ieeexplore.ieee.org/document/9161009

08 SECOND数据集

一个良好注释的语义变化检测数据集,从多个平台和传感器收集 4662 对航空图像。这些图像组合分布在杭州、成都和上海等城市。每个图像的大小为 512 x 512,并在像素级别进行注释。第二类侧重于6个主要的陆地覆盖类,即非植被地表、树木、低植被、水、建筑和游乐场,它们经常与自然和人为的地理变化有关。

数据集下载地址:

http://www.captain-whu.com/PROJECT/SCD/

论文地址:

https://arxiv.org/abs/2010.05687

09 S2MTCP数据集

数据集 S2MTCP 数据集包含 N = 1520 个图像对,分布在所有有人居住的大陆上,图像对主要集中在北美、欧洲和亚洲。空间分辨率小于 10 m 的波段将重新采样到 10 m,图像将裁剪为大约 600x600 像素。它是为自监督的训练而创建的。

下载地址:

https://zenodo.org/record/4280482#.YB6q4jHitPZ

论文链接:

https://arxiv.org/abs/2101.08122

这篇关于遥感变化检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373250

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语