遥感变化检测数据集

2023-11-09 00:30
文章标签 数据 遥感 变化检测

本文主要是介绍遥感变化检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感变化检测数据集

遥感变化检测任务是利用多时相的遥感数据,采用多种图像处理和模式识别方法提取变化信息,并定量分析和确定地表变化的特征与过程。它涉及变化的类型、分布状况与变化量,即需要确定变化前、后的地面类型、界线、及变化趋势,进而分析这些动态变化的特点与原因。

遥感变化检测的影响因素

  • 遥感系统因素的影响(时间、空间、光谱、辐射分辨率):不同遥感系统的时间、空间、光谱和辐射分辨率不同。在变化检测前,一方面需要对检测区域内的主要问题进行调查,充分认识被检测对象的空间分布特征、波谱反射率与辐射特征及时相变化特征;另一方面需要充分了解遥感数据本身的特征,并将两者联系起来,以选择合适的遥感数据源。这是变化检测能否成功的前提。
  • 环境因素的影响(大气、土壤湿度状况、物候特征):用于变化检测的遥感图像应尽量无云或没有很浓的水汽。若用于变化检测 的不同日期的遥感图像的大气状况存在明显的差异,且难以找到可替代的数据,则需要应用大气辐射传输模型进行处理,以消除图像上大气衰减的影响。
  • 土壤湿度条件对地物的反射特征有很大的影响。在一些变化检测中,不仅需要检测图像获取时的土壤湿度,还需要检测前几天或前几周的雨量记录,以确定土壤湿度变化对光谱特性的影响。如果研究区内仅某些地段的土壤湿度差异明显,则需要对这些地段进行土壤的分层分类处理。

地球上的任何对象都存在时相变化,不管是自然生态系统还是人文现象,只是变化的的速度和过程有所不同。且不同时相的植物光谱特征会有所变化。因此,只有通过对地面对象的物候变化特征的理解,选择目标变化最大对应的时间段,才有可能选择合适时间的遥感数据,并从中获取丰富的变化信息。

01 MtS-WH数据集

Multi-temp Scene Wuhan(MtS-WH) 数据集主要用于进行场景变化检测的方法理论研究与验证。场景变化检测就是在场景语义的层次上,对一定范围区域的土地利用属性变化情况进行检测和分析。

本数据集主要包括两张由IKONOS传感器获得的VHR图像,大小为7200 x 6000的大尺寸高分辨率遥感影像。覆盖范围为中国武汉市汉阳区。影像分别获取于2002年2月和2009年6月,经过GS算法融合,分辨率为1m,包含4个波段(蓝,绿,红和近红外波段)。

整个数据集的训练样本和测试样本都是在大尺度高分辨率遥感影像中选取产生的。每个时相训练集包括190张影像,测试集包括1920张影像。训练集和测试集的场景图片共划分为以下几个类别:

数据集下载地址:

http://sigma.whu.edu.cn/newspage.php?q=2019_03_26

论文地址:

https://ieeexplore.ieee.org/document/7817860

02 SZTAKI AirChange Benchmark set

SZTAKI AirChange Benchmark set,该基准集包含13对航空影像,尺寸为952x640,分辨率为1.5m/pixel,以及binary change masks(手工绘制)。每个记录都包含一对初步配准的输入图像和change mask。在生成change mask时,数据集将以下差异视为相关更改:(a)新建城区(b)建筑施工(c)种植大批树木(d)新的耕地(e)重建前的基础工作。请注意,ground truth不包含变化分类,仅为每个像素标注 变化/不变化 标签。这是最常用的数据集之一。

数据集下载地址:

http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html

论文地址:

https://ieeexplore.ieee.org/document/5169964

03 AICD数据集

该数据集包含1000对800×600大小的图像及其对应的像素级变化标记,图像的地面分辨率约为0.5m。数据集包含100个不同的场景,包含树木、建筑物等对象。此外,为了分析视点差异对检测性能的影响,每个场景分别从五个不同的视点进行拍摄。下图展示了视点的设置,摄像机在高度约为250米,半径为100m的范围内,以10°为间隔,固定倾角约为-70度进行五个视点的拍摄。

数据集下载地址:

https://computervisiononline.com/dataset/1105138664

论文地址:

https://ieeexplore.ieee.org/document/6050150

04 Synthetic and real season-varying RS images

该数据集有三种类型:合成图像(无物体相对移位)、物体相对移位小的合成图像、真实季节变化遥感图像(由谷歌地球获得)。真正的季节变化遥感图像有 16000 个图像集,图像大小为 256x256 像素(10000 个列车集和 3000 个测试和验证集),空间分辨率为 3 到 100 cm/px。

数据集下载地址:

https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9/edit

论文地址:

https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/565/2018/isprs-archives-XLII-2-565-2018.pdf

05 HRSCD数据集

此数据集包含来自 IGS 的BD ORTHO 数据库中, 291 个 RGB 航空图像对。像素级变化和土地覆盖注释,由2006年城市地图集、2012年城市地图集和城市地图集2006-2012地图绘制生成。

数据集下载地址:

https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset

论文地址:

https://www.sciencedirect.com/science/article/abs/pii/S1077314219300992

06 LEVIR-CD 数据集

数据集 LEVIR-CD 由 637 个高分辨率(VHR,0.5m/px)的 Google 地球图像对组成,大小为 1024 × 1024 像素。这些时间跨度为5至14年,图像对土地利用有显著变化,尤其是建筑增加。LEVIR-CD 涵盖各种类型的建筑,如别墅住宅、高大公寓、小型车库和大型仓库。LjiEVIR-CD 总共包含 31,333 个单独的变化的实例。

数据集下载链接:

https://justchenhao.github.io/LEVIR/

论文地址:

https://www.sciencedirect.com/science/article/abs/pii/S1077314219300992

07 Google 数据集

该数据集是在2006年至2019年之间拍摄的,覆盖了中国广州市的郊区。为了便于生成图像对,通过 BIGEMAP 软件,Google 地球服务采用了 19 个季节变化的 VHR 图像对,其中红色、绿色和蓝色三个波段,空间分辨率为 0.55 米,大小从 1006×1168 像素到 4936×5224 像素不等。侧重于建筑物。

数据集下载地址:

https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery

论文地址:

https://ieeexplore.ieee.org/document/9161009

08 SECOND数据集

一个良好注释的语义变化检测数据集,从多个平台和传感器收集 4662 对航空图像。这些图像组合分布在杭州、成都和上海等城市。每个图像的大小为 512 x 512,并在像素级别进行注释。第二类侧重于6个主要的陆地覆盖类,即非植被地表、树木、低植被、水、建筑和游乐场,它们经常与自然和人为的地理变化有关。

数据集下载地址:

http://www.captain-whu.com/PROJECT/SCD/

论文地址:

https://arxiv.org/abs/2010.05687

09 S2MTCP数据集

数据集 S2MTCP 数据集包含 N = 1520 个图像对,分布在所有有人居住的大陆上,图像对主要集中在北美、欧洲和亚洲。空间分辨率小于 10 m 的波段将重新采样到 10 m,图像将裁剪为大约 600x600 像素。它是为自监督的训练而创建的。

下载地址:

https://zenodo.org/record/4280482#.YB6q4jHitPZ

论文链接:

https://arxiv.org/abs/2101.08122

这篇关于遥感变化检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373250

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类