基于BERT和双向LSTM的微博评论倾向性分析研究-笔记

2023-11-08 21:20

本文主要是介绍基于BERT和双向LSTM的微博评论倾向性分析研究-笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14天阅读挑战赛
努力是为了不平庸~

基于BERT和双向LSTM的微博评论倾向性分析研究-笔记

一、模型介绍

针对传统语言模型在词向量表示中无法解决词语 多义性的问题,提出采用BERT模型来提取微博评论文本的语义特征表示,然后将获取的词语语义特征输入到双向LSTM模型中进行倾向性分类。
选取新浪微博评论数据进行了对比实验。实验结果表明,提出的基于BERT和双向LSTM的微博评论倾向性分类模型的F1值达到91.45%,优于其他主流的倾向性分析模型,证明了方法的有效性。
[局限] 双向 LSTM 模型训练的计算复杂度较高,BERT模型只能依赖于谷歌发布的预训练模型。
文本语义表示方法从最初的 One-Hot 表示法发展到当 前主流的 Word2Vec、Glove 等基于神经网络的方法,虽然在一定程度上解决了词语上下文关系的问题,但还没有解 决词语在不同语境下具有不同含义这个多义词问题。本文提出利用BERT作为语言特征提取与表示方法,既能获取 微博评论文本的丰富的语法、语义特征,又能解决传统基 于神经网络结构的语言特征表示方法忽略词语多义性的问题。
在这里插入图片描述
BERT在预训练目标函数时采用遮蔽语言模型(Masked Language Model,MLM),随机遮蔽一些词语,再在预训练过程中对其进行预测,这样可以学习到能够融合两个不同方向文本的表征。对于BERT模型的输入,每一个词语的表示都有词语向量(Token E吗beddings)、段向量(Segment Embeddings)和位置向量(Positional Embeddings)相加产生。
在这里插入图片描述
首先对数据进行预处理,完成数据集的预处理。 接着将训练集和验证集数据使用 BERT 模型进行预训练, 预训练过程中会在输入词序列中随机遮蔽 15% 的词,然 后再对被遮蔽的词进行预测,而被遮蔽的词 80% 的时间 用 [MASK] 替换,10% 的时间用随机词替换,10% 的时 间让选择的词不变,这样更能偏向实际观察到的词。除此 之外,预训练时还会进行下一句预测任务。在完成预训练 任务之后,便可以获取 BERT 模型对输入句子的表示,即 获取 BERT 模型的最后一层作为双向 LSTM 模型的特征输 入,并在双向 LSTM 后接上一个全连接层,并对全连接层 采用 Softmax 函数实现分类。在建模完成后,利用测试集 数据进行文本倾向性分析预测,最后采用 F1 值评价模型的性能。

二、实验介绍

作者将BERT-BLSTM模型与
1.baseline:利用BERT模型在语料库上预训练得到文本特征后,通过一个全连接层直接输入到 Softmax 分类器中;
2.Word2Vec-BLSTM: 将输入句子采用 Word2Vec 训练出词向量表示,并将其作为特征输入到 BLSTM 中进行分类;
3.EC-BLSTM: 利用注意力机制改进输入词向量来增强倾向性信息的学习,再输入到 BLSTM中进行语义信息的学习,最后实现分类;
4.ELMo-BLSTM: 将输入句子采用ELMo训练出词语特征向量后,将其输入到BLSTM 中进行分类;
5.GPT-BLSTM: 采用 OpenAI GPT 对输入句子进 行训练得到新的表示后,输入到 BLSTM 中进行分类;
6.BERT-SVM: 利用BERT预训练得到文本特征表示 之后输入到 SVM 中进行分类;7.BERT-RNN: 利用BERT预训练得到文本特征表示 之后输入到RNN 中完成特征训练及分类;
8.BERT-CNN: 利用BERT预训练得到文本特征表示 之后输入到CNN 中完成特征训练及分类。
这八类模型进行详细的对比,最终BERT-BLSTM模型获得最高的准确率、召回率和F1值。在这里插入图片描述

三、缺陷和局限

本文方法也存在一 定的问题,一个是双向 LSTM 模型训练的计算复杂度较高,另一个是BERT模型复现比较困难,只能依赖于谷歌团队发布的预训练模型。在今后的工作中将针对这些问题 进行改进,以期获得更高效的倾向性分析模型。

这篇关于基于BERT和双向LSTM的微博评论倾向性分析研究-笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372582

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串