Msa类处理多序列比对数据

2023-11-08 17:12
文章标签 数据 处理 序列 msa

本文主要是介绍Msa类处理多序列比对数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

同源搜索,多序列比对等都是常用的方式,但是有很多的软件可以实现这些同源搜索和多序列比对,但是不同的软件输出的文件格式却是不完全一致,有熟悉的FASTA格式的,也有A2M, A3M,stockholm等格式。

详细介绍:

https://github.com/soedinglab/hh-suite/wiki#multiple-sequence-alignment-formats

A3M格式文件示例:

  1. 每个序列都以 > 开头的行开始,并包含序列的标识信息。
  2. 在序列标识行之后,是与该序列相关的比对信息,通常使用字母来表示氨基酸或核酸。‘-’表示缺失,小写字母表示插入。

Stockholm格式文件示例:

import dataclasses
from typing import Sequence, Tuple
import string
import collections# Sequence 表示序列类型,内部的 Sequence[int] 表示整数序列。
# DeletionMatrix 表示一个由整数组成的二维数组。
DeletionMatrix = Sequence[Sequence[int]]### 1. 定义Msa类
# Python中,dataclass 是一个装饰器(Decorator),用于创建称为数据类(data class)的类。
# dataclass 装饰器自动生成一些特殊方法,如 __init__、__repr__、__eq__ 等,
# 减少了编写这些方法的样板代码。
@dataclasses.dataclass(frozen=True)
class Msa:"""Class representing a parsed MSA file."""## 初始化参数sequences: Sequence[str]deletion_matrix: DeletionMatrixdescriptions: Sequence[str]# __post_init__ 是Python数据类(data class)中的特殊方法,# 用于在创建数据类的实例之后进行进一步的初始化操作def __post_init__(self):if not (len(self.sequences) ==len(self.deletion_matrix) ==len(self.descriptions)):raise ValueError('All fields for an MSA must have the same length. 'f'Got {len(self.sequences)} sequences, 'f'{len(self.deletion_matrix)} rows in the deletion matrix and 'f'{len(self.descriptions)} descriptions.')def __len__(self):return len(self.sequences)def truncate(self, max_seqs: int):return Msa(sequences=self.sequences[:max_seqs],deletion_matrix=self.deletion_matrix[:max_seqs],descriptions=self.descriptions[:max_seqs])m_seq = ["AAALLL","AT-LAL","S-ALLI"] # 多序列比对后的数据m_del_matrix = [[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]m_descriptions = ["seq1","seq2","seq3"]# 实例化
test_msa = Msa(m_seq, m_del_matrix, m_descriptions)
print(test_msa)
print(len(test_msa))
# 去除msa第三条序列
print(test_msa.truncate(2))### 2. 定义函数,解析fasta格式字符串
def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:"""Parses FASTA string and returns list of strings with amino-acid sequences.Arguments:fasta_string: The string contents of a FASTA file.Returns:A tuple of two lists:* A list of sequences.* A list of sequence descriptions taken from the comment lines. In thesame order as the sequences."""sequences = []descriptions = []index = -1for line in fasta_string.splitlines():line = line.strip()if line.startswith('>'):index += 1descriptions.append(line[1:])  # Remove the '>' at the beginning.sequences.append('')continueelif not line:continue  # Skip blank lines.  sequences[index] += linereturn sequences, descriptionswith open("test_aln.a3m") as f:a3m_string = f.read()
sequences, description = parse_fasta(a3m_string)print(sequences)
print(description)## 多序列比对a3m格式:
## 1. 每个序列都以 > 开头的行开始,并包含序列的标识信息。
## 2.在序列标识行之后,是与该序列相关的比对信息,通常使用字母来表示氨基酸或核酸。
##   ‘-’表示缺失,小写字母表示插入。### 3.定义函数,解析a3m格式的msa字符串,生成Msa实例,该函数调用parse_fasta函数
def parse_a3m(a3m_string: str) -> Msa:"""Parses sequences and deletion matrix from a3m format alignment.Args:a3m_string: The string contents of a a3m file. The first sequence in thefile should be the query sequence.Returns:A tuple of:* A list of sequences that have been aligned to the query. Thesemight contain duplicates.* The deletion matrix for the alignment as a list of lists. The elementat `deletion_matrix[i][j]` is the number of residues deleted fromthe aligned sequence i at residue position j.* A list of descriptions, one per sequence, from the a3m file."""sequences, descriptions = parse_fasta(a3m_string)deletion_matrix = []for msa_sequence in sequences:deletion_vec = []deletion_count = 0for j in msa_sequence:if j.islower():deletion_count += 1else:deletion_vec.append(deletion_count)deletion_count = 0deletion_matrix.append(deletion_vec)# Make the MSA matrix out of aligned (deletion-free) sequences.# string.ascii_lowercase, string模块提供的字符串常量,包含了所有小写字母的 ASCII 字符# str.maketrans 是 Python 字符串方法,用于创建一个字符映射表(translation table),# ''换成''并删除string.ascii_lowercasedeletion_table = str.maketrans('', '', string.ascii_lowercase)# str.translate 使用映射表执行字符转换(删除小写字母)aligned_sequences = [s.translate(deletion_table) for s in sequences]return Msa(sequences=aligned_sequences,deletion_matrix=deletion_matrix,descriptions=descriptions)with open("test_aln.a3m") as f:a3m_string = f.read()msa1 = parse_a3m(a3m_string)
print(msa1)### 4.定义函数, 解析stockholm格式的msa字符串,生成Msa实例
def parse_stockholm(stockholm_string: str) -> Msa:"""Parses sequences and deletion matrix from stockholm format alignment.Args:stockholm_string: The string contents of a stockholm file. The firstsequence in the file should be the query sequence.Returns:A tuple of:* A list of sequences that have been aligned to the query. Thesemight contain duplicates.* The deletion matrix for the alignment as a list of lists. The elementat `deletion_matrix[i][j]` is the number of residues deleted fromthe aligned sequence i at residue position j.* The names of the targets matched, including the jackhmmer subsequencesuffix."""## 有序字典,保持多序列比对中的序列顺序name_to_sequence = collections.OrderedDict()for line in stockholm_string.splitlines():line = line.strip()# 去除空行和注释行if not line or line.startswith(('#', '//')):continuename, sequence = line.split()if name not in name_to_sequence:name_to_sequence[name] = ''name_to_sequence[name] += sequencemsa = []deletion_matrix = []query = ''keep_columns = []for seq_index, sequence in enumerate(name_to_sequence.values()):## 第一行为query序列if seq_index == 0:# Gather the columns with gaps from the queryquery = sequencekeep_columns = [i for i, res in enumerate(query) if res != '-']# Remove the columns with gaps in the query from all sequences.aligned_sequence = ''.join([sequence[c] for c in keep_columns])msa.append(aligned_sequence)# Count the number of deletions w.r.t. query.deletion_vec = []deletion_count = 0# query序列相对于每一个同源序列,氨基酸位置的缺失情况,累加连续缺失for seq_res, query_res in zip(sequence, query):                    if seq_res != '-' or query_res != '-':                if query_res == '-':deletion_count += 1else:deletion_vec.append(deletion_count)deletion_count = 0deletion_matrix.append(deletion_vec)return Msa(sequences=msa,deletion_matrix=deletion_matrix,descriptions=list(name_to_sequence.keys()))with open("test_aln.stockholm") as f:stockholm_string = f.read()
print(stockholm_string)msa2 = parse_stockholm(stockholm_string) 
print(msa2)## 注:parse_stockholm 和 parse_a3m 函数生成Msa对象中,
##    deletion_matrix中在查询序列deletion位置填上缺失的个数,
##    下一个氨基酸位置的0跳过,所以总长度相等
##    如函数输入msa中第一条序列(query序列)为:“A--CE-H”, 则函数输出的第一条序列为:“ACEH”, 
##    deletion_matrix的第一个元素为:[0,2,0,1]

这篇关于Msa类处理多序列比对数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371309

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模