如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务

2023-11-08 15:20

本文主要是介绍如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是DASOU;

回到2018年BERT刚刚横空出世,如果想快速搞一篇BERT的多模态预训练论文,应该从哪些方面去考虑呢?

本文讲两个问题,把多模态BERT知识点串起来【绝对原创,至少我还没看到这么讲过的博文】:

  1. 如何将MLM和多模态数据融合
  2. 如何将NSP任务和多模态数据融合

BERT中的大部分模块都是已经有的,它最大的作用就是证明了可以通过文本重建的方式从大量的无监督语料中获取到知识;

那么我们现在思考的问题就是如何从多模态数据中,使用BERT的架构,学习到有用的知识;

BERT有两个任务,一个是MLM。一个是NSP;

MLM是做文本重建,NSP是做句间关系;

1. 如何将MLM和多模态数据融合

MLM我们需要从三个方面去考虑:

  1. MLM输入形式是什么?
  2. mask的时候需要注意什么?
  3. 输出形式是什么,损失函数是什么?

在多模态场景下,对MLM任务,需要分为两个方向,一个是对文本的重建,称之为Masked Language Modeling (MLM),一个是对图像的重建,称之为Masked Region Modeling(MRM);

文本这边的MLM很简单,和BERT原始本身没区别,就不赘述了;

有意思的是图像重建:MRM;

首先拿到一张图片,要想把这个图片送入到TRM中去,需要的是多个图片tokens;

有几种方式可以做到这一点,首先第一个就是将图片分为一个个的patch,这个老生常谈了,TRM在CV中的应用大部分都是这种方式;

还有一种就是使用Faster-RCNN对图片做目标检测,获取到一个个的含有物体的regions,那么这个regions就是可以认为是一个个的tokens;

这个时候会出现一个问题,我们思考BERT中的文本tokens的输入,不仅仅是embeddings,而且还有position embeddings;

这是因为TRM中tokens之间是无序的,需要使用position embeddings来标明顺序;

那么回到图像这里,用什么来标明顺序呢?一般来说使用的是Faster-RCNN中输出的regions的locations信息【5维或者是7维度】;

仿照文本,我们需要把图片regions的表征和地理位置的表征加起来,由于维度不一致,所以加起来之前需要各自过一个全链接层;

那么【mask】怎么去操作呢,在操作的时候需要注意什么呢?

文本这边还是直接使用【mask】符号去mask掉子词就可以;

那么在图片这边,直接使用全零向量替代掉mask掉的图片regions就可以了;

这里有一个细节很有意思,在mask的时候我们有两种选择,就是文本和图片是混合mask的或者文本和图片是conditional masking;

文本和图片是混合的,就是说明我们在mask的时候不区分图片或者文本,随机mask;

文本和图片是conditional mask,就是说我在mask文本的时候,保持图片是完整的,在mask图片的时候,保持文本是完整的;

这两方式哪种好呢?

我们这么来想:

假如你的句子中存在【苹果】这个单词,而且图片中有【苹果】这个region,那么在mask的时候,会不会存在在mask掉【苹果】这个词汇的时候,同时mask掉了【苹果】这个区域图像呢?

肯定有概率存在这种情况。

所以conditional mask一般来说会更好一点。

我们在来说MLM的第三个问题,输出形式是什么或者说损失函数是什么?

文本这边就是softmax之后找是哪一个单词,从而进行更新梯度;

图片这边会更复杂一点,一般来说分为三种形式,这主要是对于一个图片我们可以使用三种方式描述它;

首先第一种就是使用Faster-RCNN的ROI pooled feature去描述这个图片区域,那么我们就可以使用mask的图片区域的TRM输出的向量接一个全连接打到相同维度,和ROI pooled feature进行一个L2

第二个就是,比如说我现在有图片中物体类别有50个类别,那么当前图片区域的输出就可以是一个50个类别软标签(做了softmax的归一化到概率),这样可以和TRM的输出做KL散度;

第三个是承接第二个,我们可以使用概率最大的那个作为当前区域的类别,也就是得到了一个one-hot,也就是要给硬标签,这个直接做交叉熵就可以

2. 多模态数据如何做NSP任务呢?

其实很简单,NSP任务本质上是做句子间的关系,那么我们只需要类比的做一个图片和文本之间是否匹配的任务就可以了,也就是ITM任务;

ITM本质上是从文本整体和图片整体来做关系,还有的会从字和单个图片区域做关系学习,比如Word-Region Alignment (WRA) ;

多模态这块有点乱,但是大体上就是按照MLM和NSP任务扩展到多模态数据上,这么理解会更容易一些;

这篇关于如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370726

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr