多方安全计算升级数据治理技术体系需考虑数据源合规性等

本文主要是介绍多方安全计算升级数据治理技术体系需考虑数据源合规性等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

易观数字化:《网络安全法》、《数据安全法》和《个人信息保护法》等法律法规的颁布,将数据安全上升到国家战略高度,而数据安全治理需通过以数据为中心的全生命周期安全管理实现;即在相关政策指引下,合理利用多种软、硬件技术手段,实现数据采集、传输、存储、处理、交换到销毁的数据全生命周期安全管理;多方安全计算可在数据存储、处理、交换等环节对其实现助力。


事件背景

 

数据成为关键生产要素,数据资产的价值成为行业关注焦点。光大银行全面推进数据资产管理与运营,其中,光大银行上线多方安全计算平台,成为业内第一个正式上线的企业级隐私计算平台,为下一步光大银行与其他企业间的查询、统计、建模等联合数据共享应用奠定了安全基础。


多方安全计算应用于数据全生命周期安全管理多个环节

 

多方安全计算(Secure Multi-Party Computation, MPC)的本质是分布式大数据计算方式,在多个参与方正确执行分布式计算任务的同时,除结果使用方可获得计算结果外,各方均不能得到其他方的隐私数据。多方安全计算对数据隐私的保证有效解决了数据隐私与数据共享间的矛盾。


多方安全计算通过在密文存储、数据安全查询、联合数据分析、联合建模、联合预测和数据可信交换等场景的应用,可以帮助数据全生命周期安全管理实现在数据存储、处理、交换等环节的安全。光大银行建设多方安全计算平台是在数据全生命周期安全管理中利用多方安全计算技术的典型示范。 


72e2382bb1e657a7293ec1c2cce6bb3e.png 

数据存储安全


同态加密等软件技术可以将数据以密文形式进行存储,当需要使用数据时,除了解密方式,还可以通过密文计算的方式实现数据价值。 

数据处理安全


通过安全多方计算技术的应用,数据查询、联合分析、联合建模、联合预测等数据处理方式可以在保证数据隐私安全的前提下进行,并且其实现效果将与明文数据处理得到的结果保持一致。 

数据交换安全


安全多方计算提供了一套构建在协同计算网络中的信息交换和数据跟踪的统一标准,可实现机构间数据的可信互联互通。


给CTO的提示

 

多方安全计算和数据全生命周期安全管理的关系是相辅相成的

数据全生命周期安全管理可以利用多方安全计算保障多个环节数据的安全性;同时多方安全计算的运用离不开全生命周期安全管理多环节统筹,一个完整的多方安全计算产品需要包含数据采集和数据销毁等环节,并结合数据清理、数据预处理、数据可信删除等技术。 


从技术本身实现维度来看,多方安全计算需要数据全生命周期安全管理辅助优化


其一,数据源的合规性制约着多方安全计算的实际应用,唯有在数据采集环节实现告知数据主体和征得数据主体同意的合法合规,才能发挥多方安全计算的技术价值。


其二,加密和解密过程会产生性能消耗,因此需要预先通过敏感数据识别、数据标记等方式区分出隐私数据和可公开数据,从而帮助实现安全性和性能的平衡。 


多方安全计算发展短期看隐私计算技术融合,长期看大数据安全体系建设


短期来看,多方安全计算需要与联邦学习和可信执行环境结合,共同完善隐私计算技术架构体系。长期来看,隐私计算市场热度背后需要关注其在解决数据安全流通和应用方面的长远价值,隐私计算升级数据全生命周期安全管理技术体系,助力大数据体系建设和企业数字化转型。


声明须知易观数字化在本文中引用的第三方数据和其他信息均来源于公开渠道,易观数字化不对此承担任何责任。任何情况下,本文仅作为参考,不作为任何依据。本文著作权归发布者所有,未经易观数字化授权,严禁转载、引用或以任何方式使用易观数字化发布的任何内容。经授权后的任何媒体、网站或者个人使用时应原文引用并注明来源,且分析观点以易观数字化官方发布的内容为准,不得进行任何形式的删减、增添、拼接、演绎、歪曲等。因不当使用而引发的争议,易观数字化不承担因此产生的任何责任,并保留向相关责任主体进行责任追究的权利。


这篇关于多方安全计算升级数据治理技术体系需考虑数据源合规性等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369446

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性