Python地学分析 — GDAL对遥感影像重采样

2023-11-08 06:00

本文主要是介绍Python地学分析 — GDAL对遥感影像重采样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注博主的微信公众号:“智能遥感”。

该公众号将为您奉上Python地学分析、爬虫、数据分析、Web开发、机器学习、深度学习等热门源代码。

本人的GitHub代码资料主页(持续更新中,多给Star,多Fork):

https://github.com/xbr2017

CSDN也在同步更新:

https://blog.csdn.net/XBR_2014

 对遥感影像重采样是遥感数据预处理常用的手段之一,本节重点讲解高、低分辨率图像重采样原理与方法。

思来想去,如果一味地给大家直接上代码,会显得有些枯燥无聊,可读性会有所降低。为了提高大家阅读的积极性,从本节开始,给大家展现一些高清遥感图像实例(封面图)。这样既可以学习到遥感科学在实际生活中的用途,还可以体会遥感之美。怎么突然觉得自己好有情怀???下面请先看封面简介:

图像来自LandSat官网

厄勒海峡大桥:1991年,丹麦和瑞典政府同意建立一座连接厄勒海峡两岸国家间的桥梁。瑞典马尔默(右)和丹麦哥本哈根(左)之间16公里长的厄勒海峡干线于2000年建成并通车。随着冰河时代末期海平面上升,切断了两者之间的陆地连接,丹麦和瑞典7000年后再次建立起两国的联系。

厄勒海峡链接有三个主要部分。在丹麦方面,链接从一条3,510米的水下隧道开始。隧道从水下延伸到一个长4055米的人工岛Peberholm上的一条道路上,该岛在图像中的天然岛屿南部呈现出明亮的白色形状。电缆支撑的厄勒海峡大桥横跨海峡东部向瑞典延伸7,845米,在整个图像上划出一条细长的白线(文字描述译自LandSat官网)。

遥感影像重采样

针对不同的遥感业务场景或者科研需求,对应的不同分辨率的遥感影像有着不同的用处。什么叫遥感影像的重采样呢?其定义是:根据各相邻的原采样点内插出新采样点的过程。内插的方法有双线性插值法、双三次卷积法和最邻近像元法等。重采样的定义是不是很专业?咳咳,好像有点抽象唉,没事没事,看看下面的示意图,你就能明白了。

上图过程表示从低分辨率图像往高分辨率图像进行重采样。在编写程序时,需要一个更大的数组来存储重采样后的新图像。左边图像将每个像元内插为对应的四个小像元,从6个大像元重采样成24个小像元。看到这里,相信大家就基本明白什么是重采样了吧。下面来看看具体的Python程序实战,其实重采样就这么简单。

# _*_ coding: utf-8 _*_
__author__ = 'xbr'
__date__ = '2018/10/23 15:09'import os
from osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('p047r027_7t20000730_z10_nn10.tif')
in_band = in_ds.GetRasterBand(1)
out_rows = in_band.YSize * 2
out_columns = in_band.XSize * 2gtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('band1_resampled.tif',out_columns, out_rows)
out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())
geotransform[1] /= 2
geotransform[5] /= 2
out_ds.SetGeoTransform(geotransform)data = in_band.ReadAsArray(buf_xsize=out_columns, buf_ysize=out_rows)
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(data)out_band.FlushCache()
out_band.ComputeStatistics(False)
out_ds.BuildOverviews('average', [2, 4, 8, 16, 32, 64])
del out_ds

这个例子有一些值得注意的重要事项。首先,在创建新数据集时,你将行数和列数加倍,并将这些相同的数字作为参数传递给ReadAsArray。这样就可以确保输入数据维度与输出数据维度相匹配,并且还可以将数据重新采样到较大的维度。你可以使用buf_obj参数的现有数组并获得相同的结果,而不是使用buf_xsize和buf_ysize参数。你还可以提供win_xsize和win_ysize参数,但默认为行和列的原始大小。

这说明在不改变地理转换大小的情况下,对比重新采样前后的结果。左上角的较小图像是正确的。较大的一个是通过使用输入图像中未编辑的地理转换创建的,与矢量图不匹配。

上面讲述了如何重低分辨率重采样成高分辨率,而重高分辨率重采样成低分辨率,则是实际遥感应用中比较多的情况。最近邻插值常用于将图像重采样到较小尺寸时,这种情况下,在输出中使用每四个像元块的右下像元值。

 

# _*_ coding: utf-8 _*_
# _*_ coding: utf-8 _*_
__author__ = 'xbr'
__date__ = '2018/10/23 15:50'import osimport numpy as np
from osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('nat_color.tif')
out_rows = int(in_ds.RasterYSize / 2)
out_columns = int(in_ds.RasterXSize / 2)
num_bands = in_ds.RasterCountgtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('nat_color_resampled.tif',out_columns, out_rows, num_bands)out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())
geotransform[1] *= 2
geotransform[5] *= 2
out_ds.SetGeoTransform(geotransform)data = in_ds.ReadRaster(buf_xsize=out_columns, buf_ysize=out_rows)
out_ds.WriteRaster(0, 0, out_columns, out_rows, data)
out_ds.FlushCache()
for i in range(num_bands):out_ds.GetRasterBand(i + 1).ComputeStatistics(False)out_ds.BuildOverviews('average', [2, 4, 8, 16])
del out_ds

该代码与第一个代码类似,不同之处在于输出行和列的数量减半而不是加倍,并且像元大小加倍而不是减半。请注意,在这种情况下,你要确保行数和列数是整数,因为除法的结果可能是浮点数,如果不是整型数据,程序很可能报错,可以自己尝试一下。

 

重采样前、后对比图,下图变得模糊,其实是分辨率变低了

这篇关于Python地学分析 — GDAL对遥感影像重采样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368217

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互